

UNIVERSIDAD DE CARABOBO FACULTAD EXPERIMENTAL DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE QUÍMICA

EVALUACION, DISEÑO Y PUESTA EN MARCHA DE LAS COLUMNAS DE DESTILACIÓN DEL LABORATORIO DE TECNOLOGÍA QUIMÍCA II DEL DEPARTAMENTO DE QUÍMICA DE LA FACYT

Trabajo Especial de Grado presentado como requisito para optar al Titulo de Licenciado en Química

Tutor Académico: Sheyla A. Ortiz K. Autor: Erick A. Acevedo L.

VALENCIA, ABRIL DE 2007

Universidad de Carabobo Facultad Experimental de Ciencias y Tecnología

Departamento de Química Valencia – Venezuela

<u>CERTIFICADO DE APROBACIÓN DEL</u> <u>TRABAJO ESPECIAL DE GRADO</u>

Los abajo firmantes, Miembros del Jurado designado por el Consejo del Departamento de Química de la Facultad Experimental de Ciencias y Tecnología, hacemos constar que hemos revisado, evaluado y aprobado el siguiente Trabajo Especial de Grado:

Titulado: "Evaluación, Diseño y Puesta en Marcha de las Columnas de Destilación del Laboratorio de Tecnología Química II del Departamento de Química de la FACYT"

Presentado por el (la) Bachiller: Erick A. Acevedo L.

C.I. V. 11.350.938

Fecha de Aprobación: 18 de abril de 2007.

En Valencia, a los dieciocho días del mes de abril del año dos mil siete.

Prof. Sheyla Ortiz

Tutor

Prof. Carlos F. Jurado Pi nal

Prof.^a Marià C. Villegas Jurado Principal

/Leilibeth López

Luz de una Tierra Inmortal...

Universidad de Carabobo. Departamento de Química. Ciudad Universitaria. Av. Salvador Allende. Bárbula Vene Telefax 0241-8678805– Apartado Postal 2005. Valencia – Edo. Carabobo

UNIVERSIDAD DE CARABOBO FACULTAD EXPERIMENTAL DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE QUÍMICA

EVALUACION, DISEÑO Y PUESTA EN MARCHA DE LAS COLUMNAS DE DESTILACIÓN DEL LABORATORIO DE TECNOLOGÍA QUIMÍCA II DEL DEPARTAMENTO DE QUÍMICA DE LA FACYT

AUTOR: ERICK ACEVEDO TUTOR: SHEYLA ORTIZ ABRIL, 2007

RESUMEN

El presente trabajo consistió en la evaluación de las eficiencias de las columnas de destilación de platos y de relleno, previa instalación y puesta en marcha de las mismas, empleando para ello mezclas de etanol-agua e isopropanol-agua, con la finalidad de que se realicen ambas experiencias en el Laboratorio de Tecnología Química de la FACYT. Se verificaron las condiciones de equipos y requerimientos para la instalación de las torres de rectificación en el laboratorio, se inventariaron las partes y accesorios, se adquirieron las partes faltantes, se instalaron las torres, se pusieron en marcha y se evaluaron con las mezclas binarias de etanol-agua e isopropanol-agua, se trabajó a diferentes relaciones de reflujo y a diferentes composiciones de alimentación. Durante el desarrollo de este proyecto se presentaron algunos problemas operativos que fueron controlados durante el proceso, entre los cuales se pueden mencionar: fugas, inundación, borboteo, calentamiento, etc. En la torre de relleno se evaluó la eficiencia por el método de la fracción vaporizada y el rendimiento utilizando como herramienta la ecuación de Lord Rayleigh. En la torre de platos se evaluó la eficiencia por el método gráfico de McCabe Thiele y la fracción vaporizada haciendo una comparación entre ambas metodologías. Se generó un manual de operación de las torres. Se lograron valores de eficiencia satisfactorios, en la torre de relleno un 60 % aproximadamente y en la de platos entre un 50 y un 60 %. Para una mejor operabilidad de las torres debe complementarse con las partes faltantes como algunos accesorios y el panel de control. Ahora FACYT cuenta con dos equipos de Tecnología Química en sus propias instalaciones facilitando a estudiantes y docentes la realización de estas experiencias.

AGRADECIMIENTO

Quiero agradecer:

A Dios sobre todas las cosas.

A mi familia por el apoyo brindado.

A la Facultad de Ciencias y Tecnología de la Universidad de Carabobo por ser mi casa de estudio durante los años de mi carrera.

A la profesora Sheyla A. Ortiz K. por haberme dado la oportunidad de trabajar a su lado y por el hecho de tener suficiente paciencia para concluir este trabajo.

A las técnicos Cecilia Parra y Beatriz Moy por la ayuda recibida que ha sido fundamental para la realización del presente trabajo.

También quiero agradecer a la técnico Lesbia que en ocasiones me brindó su ayuda.

A todos los componentes de la cátedra de Tecnología Química del Departamento de Química de la FACYT, les doy las gracias, ya que, todos y cada uno de ellos han contribuido en algún momento de alguna forma a la realización de este trabajo.

DEDICATORIA

Dedicado a la memoria de ese gran hombre que siempre me supo guiar y estuvo a mi lado en todo momento. Un gran hombre que además de padre fue un mi mejor amigo Rubén Antonio Acevedo.

A mi madre Ligia Margarita Lares y a mis dos hijos Anderson Jesús y Andrés Alejandro.

ÍNDICE GENERAL

CERTIFICADO	ii
RESUMEN	iii
AGRADECIMEINTO	iv
DEDICATORIA	V
ÍNDICE GENERAL	vi
ÍNDICE DE FIGURAS	x
ÍNDICE DE TABLAS	xiii
INTRODUCCIÓN	14
CAPÍTULO I. FORMULACIÓN DEL PROBLEMA.	
1.1. Planteamiento del problema.	17
1.1.1. Situación actual.	20
1.1.2. Situación deseada.	20
1.2. Justificación.	21
1.3. Objetivos.	22
1.3.1. Objetivo general.	22
1.3.2. Objetivos específicos	22
CAPÍTULO II. MARCO REFERENCIAL.	
2.1. Antecedentes	24
2.2. Fundamentos Teóricos	28
2.2.1. Equilibrio Líquido-Vapor.	28
2.2.1.1. Equilibrios a presión constante.	28
2.2.1.2. Punto de burbuja.	30
2.2.1.3. Punto de rocío.	31
2.2.2. Azeótropo.	31
2.2.3. Destilación.	32
2.2.3.1. Destilación continua.	32

2.2.3.2. Destilación por lotes.	33
2.2.4. Parámetros a considerar en el diseño de equipos de transferencia de masa.	35
2.2.4.1. Capacidad.	35
2.2.4.2. Caída de presión.	35
2.2.4.3. Costos.	36
2.2.4.4. Facilidad de operación.	37
2.2.4.5. Eficacia.	39
2.2.5. Columnas empacadas.	40
2.2.5.1. Tipos de relleno.	40
2.2.5.2. Diámetro de la columna.	43
2.2.5.3. Altura del lecho empacado.	45
2.2.6. Destilación diferencial.	47
2.2.7. Columna de Platos.	49
2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño.	51
2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño.2.2.8.1. Líneas de Operación.	51 51
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 	51 51 57
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 	51 51 57 58
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 	51 51 57 58 59
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 	51 51 57 58 59 60
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 	51 51 57 58 59 60 60
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 2.2.8.7. Razón óptima de flujo. 	51 57 58 59 60 60 61
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 2.2.8.7. Razón óptima de flujo. 2.2.8.8. Eficiencia de las etapas 	51 57 58 59 60 61 62
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 2.2.8.7. Razón óptima de flujo. 2.2.8.8. Eficiencia de las etapas 2.2.8.9. Procedimiento de cálculo aproximado para mezclas binarias. 	51 57 58 59 60 61 62 63
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 2.2.8.7. Razón óptima de flujo. 2.2.8.8. Eficiencia de las etapas 2.2.8.9. Procedimiento de cálculo aproximado para mezclas binarias. 2.2.9. Tipos de platos. 	51 57 58 59 60 61 62 63 65
 2.2.8. Método de McCabe Thiele para la resolución de problemas de diseño. 2.2.8.1. Líneas de Operación. 2.2.8.2. Construcción de la etapa de equilibrio. 2.2.8.3. Construcción de la columna total. 2.2.8.4. Localización de la etapa de alimentación. 2.2.8.5. Etapas mínimas. 2.2.8.6. Reflujo mínimo. 2.2.8.7. Razón óptima de flujo. 2.2.8.8. Eficiencia de las etapas 2.2.8.9. Procedimiento de cálculo aproximado para mezclas binarias. 2.2.9.1. Eficiencia del plato. 	51 57 58 59 60 61 62 63 65 68

2.2.10.1. Criterios para determinar el plato de alimentación.	72
2.2.10.2. Línea de operación y Fracción vaporizada.	73
2.2.11. Tipos de condensadores.	75
2.2.11.1. Condensador total.	75
2.2.11.2. Condensador parcial.	76
2.2.12. Tipos de calderín.	77
2.2.12.1. Calderín parcial.	77
2.2.11.2. Calderín total.	78
CAPÍTULO III. MARCO METODOLÓGICO.	
3.1. Verificación de las condiciones de los equipos y los requerimientos básicos para el montaje de las torres de destilación.	80
3.2. Diseño de los platos y el calderín de la torre de rectificación.	82
3.3. Selección del tipo de empaque y de la manta de calentamiento para la torre de destilación de relleno.	82
3.4. Instalación de las torres.	83
3.5. Condiciones de operación de las torres para su puesta en marcha utilizando las mezclas agua-etanol y agua-isopropanol.	86
3.5.1. Puesta en marcha.	86
3.5.2. Desarrollo de los modelos matemáticos ajustados al comportamiento de las torres de destilación (Platos y Relleno).	89
3.5.3. Diseño de tablas y elaboración de gráficos (Evaluación del proceso de destilación).	92
3.6. Generar un manual de operación de las torres.	93
CAPÍTULO IV. DISCUSIÓN Y RESULTADOS.	
4.1. Torre de relleno.	95
4.1.1. Mezcla: Etanol-Agua.	95
4.1.2. Mezcla: Isopropanol-Agua.	98

4.2. Torre de Platos.	101
4.2.1. Mezcla: Etanol-Agua.	101
4.2.2. Mezcla: Isopropanol-Agua.	105
CONCLUSIONES	110
RECOMENDACIONES	113
BIBLIOGRAFÍA	115
APÉNDICE A: CÁLCULO TÍPICO.	119
APÉNDICE B: CURVAS DE CALIBRACIÓN.	134
APÉNDICE C: DATOS Y GRAFICOS. ETANOL-AGUA. TORRE DE RELLENO.	138
APÉNDICE D: DATOS Y GRAFICOS. 2-PROPANOL-AGUA. TORRE DE RELLENO.	151
APÉNDICE E: DATOS Y GRAFICOS. ETANOL-AGUA. TORRE DE PLATOS.	164
APÉNDICE F: DATOS Y GRAFICOS. 2-PROPANOL-AGUA. TORRE DE PLATOS.	173
APÉNDICE G: MANUAL DE OPERACIÓN DE LAS TORRES.	184
APÉNDICE H: PARTES DE LAS TORRES.	196
ANEXOS	207

ÍNDICE DE FIGURAS

Figura № 1	Equilibrio a presión constante líquido-vapor.	29
Figura № 2	Contribución de caída de presión para platos de flujo cruzado $h_d =$ caída de presión a través de la cachucha o malla, altura equivalente de líquido en el plato.	36
Figura № 3	Diversos tipos de rellenos comerciales comunes.	41
Figura № 4	Correlación generalizada de la pérdida de carga.	44
Figura № 5	Dos envolventes de balance de materia en la sección superior de una columna de destilación.	52
Figura № 6	Envolventes de balance de materia en torno al extremo inferior de la columna de destilación. El rehervidor parcial es la etapa de equilibrio 1.	53
Figura № 7	Intersección típica de las dos líneas de operación en la línea q para una etapa de alimentación. La línea q que se muestra corresponde a una alimentación parcialmente vaporizada.	56
Figura № 8	Los cinco casos de las líneas q: (1) Vapor sobrecalentado $q < 0$, (2) Vapor saturado $q = 0$, (3) Parcialmente evaporada $1 > q > 0$, (4) Líquido Saturado $q = 1$, (5) Líquido Subenfriado $q > 1$.Pendiente de la línea $q = q/(q-1)$.	57
Figura № 9	Ilustración del modo en que se pueden localizar etapas de equilibrio en el diagrama $x - y$ mediante el uso alternativo de la curva de equilibrio y la línea de operación.	58
Figura № 10	Construcción para una columna con una alimentación de punto de burbuja, un condensador total y un rehervidor parcial.	59
Figura № 11	Diagrama de McCabe Thiele para casos limitativos.	61

Х

Figura № 12	Ubicación del reflujo óptimo para una alimentación dada y una separación específica.	62
Figura № 13	Aplicación de una eficiencia de Murphee.	63
Figura № 14	Determinación de reflujo mínimo para una curva normal de equilibrio.	64
Figura № 15	a). Plato de flujo cruzado (vista lateral). b) Plato a contracorriente (vista lateral).	65
Figura № 16	Patrones comunes de flujo de líquido, platos de flujo cruzado.	66
Figura № 17	Dispersores de plato perforado.	67
Figura № 18	Dispersores de plato de válvula.	67
Figura № 19	Se dibuja en el diagrama de McCabe Thiele la recta característica de la alimentación o recta q.	70
Figura № 20	Para una columna convencional con condensador total, se parte de $X_{1,0} = X_D$	70
Figura № 21	Para el valor obtenido de $y_{1,1}$ se calcula la composición $X_{1,1}$ en equilibrio.	70
Figura № 22	De $X_{1,1}$ se calcula el valor de con la recta de enriquecimiento.	70
Figura № 23	Se alterna el cálculo de $X_{1,i}$ (con el equilibrio, trazando la horizontal) y de $y_{1,i+1}$ (con la operativa, trazando la vertical) hasta que se obtenga un plato con $X_{1.}$	71
Figura № 24	Una vez rebasado el punto (1) hay que emplear una vez la recta operativa de alimentación para calcular la composición del líquido que sale del plato de alimentación.	71
Figura № 25	Por último, se procede igual que en el sector de enriquecimiento, partiendo de $X_{2,1}$ y utilizando la recta	71

xi

Figura № 26	operativa de agotamiento hasta alcanzar $X_{2,i} < X_R$. Esquema de un proceso de destilación para la deducción de los balances de materia y de componente.	74
Figura № 27	Tipos de condensadores.	75
Figura № 28	Condensador parcial. Deducción de la recta operativa de enriquecimiento.	76
Figura № 29	Tipos de calderín.	77
Figura № 30	Líneas de operación experimentales a las respectivas relaciones de reflujo en el diagrama XY de la mezcla binaria etanol-agua.	97
Figura № 31	Líneas de operación experimentales a las respectivas relaciones de reflujo en el diagrama XY de la mezcla binaria isopropanol-agua.	100
Figura № 32	Construcción de los de los platos en el diagrama XY por el método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria etanol-agua con un R = 1/1.	103
Figura № 33	Construcción de los de los platos en el diagrama XY por el método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria etanol-agua con R = 8/1.	104
Figura № 34	Construcción de los de los platos en el diagrama XY por el	

método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria isopropanol-agua con R = 3/4.

ÍNDICE DE TABLAS

Tabla № 1	Datos de diseño para diferentes rellenos.	42
Tabla № 2	Condiciones térmicas de la mezcla de alimentación.	55
Tabla № 3	Selección del patrón de flujo en plato de flujo cruzado.	66
Tabla № 4	Resultados de la evaluación de la columna de relleno a diferentes relaciones de reflujo con el sistema etanol-agua.	96
Tabla № 5	Resultados de la evaluación de la columna de relleno a diferentes relaciones de reflujo con el sistema isopropanolagua.	99
Tabla № 6	Resultados de la evaluación de la columna de platos a diferentes relaciones de reflujo con el sistema etanol-agua	102
Tabla № 7	Resultados de la evaluación de la columna de platos a diferentes relaciones de reflujo con el sistema Isopropanolagua	106

INTRODUCCIÓN

El Departamento de Química de la Facultad Experimental de Ciencias y Tecnología (FACYT), cuenta con instalaciones para el Laboratorio de Tecnología Química; y en busca de darle una funcionalidad, además de reducir los continuos problemas que se suscitaban al momento de realizar las prácticas en el Laboratorio de Ingeniería Química (L.I.Q.) de la Facultad de Ingeniería, se presentó el siguiente Trabajo Especial de Grado con el objeto de evaluar dos equipos de las cinco experiencias que contempla la asignatura de Tecnología Química II en su componente práctico.

La investigación realizada tuvo como propósito evaluar las columnas de destilación de platos y de relleno, una vez instaladas y puestas en marcha, utilizando mezclas binarias de etanol-agua e isopropanol-agua.

La metodología empleada, acorde con el tipo de investigación, consistió en realizar un diagnóstico de todos los accesorios y equipos, además del espacio físico y los requerimientos básicos, tomando en consideración el diseño de algunos de los accesorios como los platos, el calderín y el relleno.

Seguidamente se realizó la instalación y puesta en marcha de las columnas de destilación para su posterior evaluación. El estudio del comportamiento de los equipos se enfocó en las condiciones de operación, utilizando modelos matemáticos consultados en la literatura, para el cálculo de la eficiencia y el rendimiento de los mismos.

Para una mejor comprensión del presente trabajo este se estructuró en cuatro capítulos. El primero describe el problema, su situación actual y la deseada,

la justificación y los objetivos. El capítulo II presenta una revisión de investigaciones previas en el área, las cuales sirven de soporte a este estudio, bien sea por su metodología o por los fundamentos teóricos en los cuales se basan, además se recopilaron aspectos teóricos referentes a la operación de destilación.

En el capítulo III, titulado Marco Metodológico, se explica en forma secuencial la estrategia empleada para el logro de los objetivos. En el cuarto capítulo se presenta la discusión de los resultados donde se realiza un análisis de cada uno de los valores de eficiencia y de rendimiento obtenido, además de las conclusiones y recomendaciones; y para finalizar las referencias bibliográficas, apéndices y anexos.

El desarrollo de esta investigación permitirá a la FACYT contar con los equipos (torre de platos y relleno) dentro de sus instalaciones, lo que generará flexibilidad en el desarrollo de las prácticas.

CAPÍTULO I. FORMULACIÓN DEL PROBLEMA

1.1 PLANTEAMIENTO DEL PROBLEMA

La Facultad Experimental de Ciencias y Tecnología (FACYT) fue creada el 02 de julio de 1.993 con una estructura departamental y tres carreras iniciales: Química, Física, y Computación. A partir de este momento, el proceso de desarrollo y consolidación de la FACYT ha sido inminente e innovador, tanto que hasta hoy se cuenta con dos carreras más (Matemáticas y Biología) y con instalaciones propias.

En su visión FACYT busca capacitar alrededor de 2500 estudiantes con servicios de planta física y equipos que garanticen el desarrollo de actividades de investigación, docencia y extensión en el área de las ciencias y la tecnología; y egresar profesionales con una alta calidad científica y socio-humanística.

Para el 24 de enero de 1.994 se da inicio a las actividades docentes del primer año de la Licenciatura en Química de régimen anual, teniendo como sede provisional una oficina de 16 m² como Dirección de un plantel en las instalaciones del área de Estudios de Post-Grado de la Universidad de Carabobo en Mañongo.

Sin embargo, las incomodidades naturales de tener instalaciones tan dispersas determinaron que, para el Departamento de Química la política de consecución de la planta física y la dotación de equipos debía ser tratada como una actividad cotidiana y necesaria en la consolidación y desarrollo de esta Licenciatura, V por ende. se realizaron grandes esfuerzos en el reacondicionamiento de espacios físicos para laboratorios. Desde ese entonces, la Facultad ha ido creciendo progresivamente. (Dodecámeno, 2000)

La licenciatura en Química es una carrera de carácter científico que se dicta con el objeto de formar profesionales que puedan desarrollarse en diferentes sectores de la industria, la investigación y la docencia. Por tal fin, ha incorporado

en su pensum de estudio la materia de Tecnología Química II, asignatura Teóricopráctica que tiene como objetivo analizar los fenómenos de transferencia de masa y energía que fundamentan las principales operaciones unitarias, como es el caso de la destilación, absorción, evaporación, etc. La inclusión de esta asignatura en el pensum del licenciado le permite a este último interactuar con otros profesionales de áreas afines, como ingenieros, y le proporciona a nivel industrial las competencias para desarrollarse en áreas diversas, como Ingeniería de Procesos, Investigación y desarrollo, Control de Calidad, entre otras.

Es decir, posee un alto conocimiento de las bases teóricas de la química aunado a la aplicación en los procesos químicos industriales, gracias a las experiencias prácticas que se realizan en los laboratorios asignados para tal fin. Sin estas experiencias prácticas, no podrían consolidarse los fundamentos teóricos y el estudiante no tendría la pericia suficiente para el manejo adecuado de los equipos involucrados en estos procesos en su vida laboral.

Una vez expuesto lo anterior y al constatar la importancia y obligatoriedad de realizar prácticas de laboratorio para cumplir con los objetivos y el perfil de la carrera, además de garantizar la inserción en el campo laboral de un profesional integral, a continuación se mencionará la problemática que presentaba la asignatura en su componente práctico, haciendo especial énfasis en las prácticas de destilación de la asignatura Tecnología Química II, motivo de la presente investigación:

 Los estudiantes de licenciatura en Química llevan a cabo sus prácticas en el Laboratorio de Ingeniería Química (L.I.Q.), de la Facultad de Ingeniería, lo que crea un desequilibrio al momento de realizar dichas experiencias, principalmente por la cantidad y disponibilidad de los equipos (dos torres de destilación de relleno y una torre de destilación de platos perforados). Generalmente el Departamento de Química debe esperar la programación hecha por la coordinación del laboratorio para los estudiantes de Ingeniería y en base a ella programar sus prácticas, existiendo la incertidumbre que si el tiempo disponible del equipo es suficiente para cumplir con los objetivos planteados por cada práctica. Adicionalmente, se presentan coincidencias, lo que trae como consecuencia la postergación de la actividad para los estudiantes de la FACYT. Al postergar la práctica el estudiante dispone de menor tiempo para el análisis de resultados y entrega del informe final. En el peor de los casos la práctica no se lleva a cabo.

- 2. En muchas ocasiones el estudiante se ve afectado por el hecho de interrumpir algunas de sus clases al tener que salir más temprano para realizar sus prácticas; y esto, por la obligación que existe de aprobar la asignatura, ya que de no ser aprobado el laboratorio se considera aplazado el componente teórico y el estudiante deberá repetir la asignatura en el siguiente año lectivo. En total se realizan cinco prácticas, por inasistencia o aplazamiento de dos de ellas se considera reprobada la asignatura en ambos componentes.
- Otro hecho relevante es el de trasladarse hasta el L.I.Q., ya que estas instalaciones se encuentran retiradas del Departamento de Química, lo que implica el desplazamiento en medios de transporte públicos o privados, trayendo como consecuencia pérdidas de tiempo, dinero y energía.
- 4. Un punto que no debe ser obviado, es cuando el equipo se encuentra fuera de servicio, lo que ocasiona esperar por su reparación, y por ende, reprogramar las prácticas tanto para los estudiantes de Ingeniería como los de FACYT, reduciendo aún más la posibilidad de realizar las mismas.

En vista de los problemas suscitados y del crecimiento indetenible de la FACYT se construyó el laboratorio de Tecnología Química, con el fin de garantizar en tiempo y espacio el logro de los objetivos prácticos de las asignaturas tecnológicas y llevar estas experiencias a las manos de los estudiantes de esta Facultad; de manera eficiente, efectiva y eficaz.

Con la finalidad de dar inicio a estas prácticas se presentó este Trabajo Especial de Grado para evaluar, diseñar y realizar la puesta en marcha de las columnas de destilación de platos y de relleno.

1.1.1 SITUACIÓN ACTUAL

Se cuenta con las instalaciones del laboratorio y el espacio físico donde pueden ser ubicadas las torres de destilación tanto de relleno como de platos. Se dispone, además, de los accesorios para armar ambas torres casi en su totalidad, sin obviar que las partes faltantes pueden ser diseñadas y/o adquiridas según las condiciones de las mismas.

De continuar estos equipos sin ensamblar y sin la evaluación de su funcionamiento y puesta a punto, el problema del laboratorio de la asignatura Tecnología Química II se hubiese suscitado nuevamente este año y los subsiguientes.

1.1.2 SITUACIÓN DESEADA

Lograr la realización de estas dos experiencias de laboratorio en instalaciones de FACYT; así, se estaría contribuyendo a que los profesores y estudiantes cumplan los objetivos teórico-prácticos de la asignatura, evitando que el estudiante se desplace a otros recintos fuera de la Facultad. Además el estudiante no interrumpe sus horarios de clases, no tiene que esperar turno para llevar a cabo sus prácticas y lo que es más importante, cuenta con sus propias experiencias dentro de la facultad.

Por otra parte, se está comenzando a dar uso a la instalación física construida y diseñada para las prácticas de los laboratorios de Tecnología Química I y II.

1.2 JUSTIFICACIÓN

El siguiente Trabajo Especial de Grado se justifica por el hecho de independizar las experiencias de laboratorio de Tecnología Química II, que se vienen realizando en el laboratorio de Ingeniería Química (L.I.Q.), de la Facultad de Ingeniería, con el principal objetivo de llevar a cabo estas prácticas en instalaciones de la Facultad Experimental de Ciencias y Tecnología (FACYT).

Cabe mencionar que la Facultad cuenta con estas instalaciones, específicamente, la del Laboratorio de Tecnología, diseñado con espacio físico suficiente para ubicar las torres de destilación de platos y de relleno, las cuales ya fueron adquiridas. Se justifica, también, por el hecho de darle utilidad al laboratorio de Tecnología Química e incluso a los equipos, ya que estos se encontraban almacenados desde hace tres años sin darle el uso adecuado.

Por lo tanto, si se tiene el espacio físico, los requerimientos básicos, los equipos y accesorios, no es necesario seguir viviendo la misma problemática que se ha venido presentando año tras año, sobre todo porque la FACYT estaría cubriendo su propia necesidad y la de sus estudiantes.

Por otra parte, se cumplió con uno de los requisitos académicos, exigidos por el Departamento para obtener el título de Licenciado en Química, además de dejar abierta la posibilidad de realización, a futuro, de otros trabajos de investigación para mejorar y complementar el laboratorio y así desarrollar tesis de pre y postgrado, trabajos de ascenso, maestrías, etc.

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

Evaluar las eficiencias de las columnas de destilación de platos y relleno, previa instalación y puesta en marcha, empleando para ello mezclas de agua-etanol y/o agua-isopropanol, con la finalidad de que se realicen ambas experiencias en el Laboratorio de Tecnología Química de la FACYT.

1.3.2 OBJETIVOS ESPECÍFICOS

- Verificar las condiciones de los equipos y los requerimientos básicos para el montaje de las torres de destilación en el laboratorio de Tecnología Química II de la FACYT.
- Diseñar los platos y el calderín de la torre de rectificación de acuerdo a las características deseadas.
- Seleccionar el tipo de empaque y la manta de calentamiento apropiados, de acuerdo a las características de la torre de destilación de relleno.
- 4. Instalar las torres incorporando cada uno de los accesorios adquiridos.
- Determinar las diferentes condiciones de operación de las torres para su puesta en marcha utilizando las mezclas binarias agua-etanol y aguaisopropanol.
- Generar un manual de operación de las torres que contribuya a la realización de las experiencias prácticas.

CAPÍTULO II

CAPÍTULO II. MARCO REFERENCIAL 2.1.- ANTECEDENTES

A continuación, se presentan algunos estudios que presentan relación con el trabajo expuesto ya que aportan datos y alternativas de solución al problema planteado.

EVALUACIÓN COMPARATIVA DEL PROCESO MANUAL Y AUTOMATIZADO DE UNA TORRE DE DESTILACIÓN DE PLATOS PERFORADOS. Yamal, Evelyn, 2005.

La presente investigación se basó en la comparación del comportamiento manual y automatizado de la torre de destilación de platos perforados, ubicada en el laboratorio de Ingeniería Química, mediante una simulación de procesos. Se plantearon varios esquemas de control y se establecieron modelos matemáticos que para fines de esta investigación resulta bastante aprovechable. Se concluye que, la operación del equipo se ve mejorada con la instalación de nuevos accesorios para su automatización, haciéndolo rentable y económico.

SIMULACIÓN DE SISTEMA DE CONTROL RETROALIMENTADO PARA LA TORRE DE DESTILACIÓN DE PLATOS POR CARGAS DEL LABORATORIO DE INGENIERÍA QUÍMICA. Autor: Sierra, Adrián. 2.004

En este trabajo se presenta la simulación de un sistema de control que implica la retroalimentación en una columna de destilación de platos en el Laboratorio de Ingeniería Química, y cuyo trabajo se fundamenta en el re-diseño de la torre para lograr una mayor eficiencia, tomando como principios básicos el diseño de platos, condiciones de operatividad, optimización y rentabilidad. Asimismo, sigue los lineamientos según el método de diseño de McCabe Thiele. Aquí se concluye, que una retroalimentación reduciría la pérdida de los productos a separar por destilación, arrojando resultados favorables e incluso mayoritariamente confiables al momento de preestablecer puntos de control que contribuyan a una mayor eficiencia.

RECUPERACIÓN DE ALCOHOL ETÍLICO A PARTIR DE PULPA DE PIÑA FERMENTADA EN LA COLUMNA DE DESTILACIÓN DE PLATOS PERFORADOS DEL LABORATORIO DE INGENIERÍA QUÍMICA. Cedeño, O., Pérez, C. y otros. 2001

Este trabajo se enfoca en la recuperación de alcohol etílico a partir de pulpa de piña fermentada, determinando el número de etapas teóricas a diferentes condiciones de reflujo, estimando la carga calórica del calderín y el condensador y determinando el grado alcohólico del etanol obtenido. Las principales conclusiones de este proyecto son: el número de etapas teóricas de la torre se ubica entre 3 y 4 siendo mayor para mayores relaciones de flujo; por otra parte, se obtienen productos con grados alcohólicos entre 78,85 y 90,96° GL, incrementándose estos con la relación de reflujo. Como estudio para este trabajo se considera importante para la evaluación de la eficiencia.

EVALUACIÓN DE LA DE LA EFICIENCIA DE LA TORRE DE DESTILACIÓN DE PLATOS PERFORADOS DEL LABORATORIO DE INGENIERÍA QUÍMICA, UTILIZANDO UNA MEZCLA AGUA-FREEZTONE EN EL CONDENSADOR DE TOPE DEL EQUIPO. Pérez, C., Rebolledo, D., y otros, 2000.

Dicha investigación tuvo como objetivo evaluar la eficiencia de la torre utilizando una mezcla Agua-Freeztone en el condensador de tope, lo cual implica establecer las condiciones necesarias de operación, determinar el número de etapas teóricas y determinar la carga calórica del sistema. Esta investigación resulta favorable, puesto que, se consideran los aspectos típicos de condiciones necesarias y modelos de cálculos.

APORTACIONES AL ESTUDIO DE COLUMNAS EN PLATOS PERFORADOS. Rodríguez García, M Teresa. 1989.

En este trabajo se diseña y pone a punto un equipo para el estudio del comportamiento fluidinámico de una columna de platos perforados así como la retención de ésta, su caída de presión y las eficacias de la misma. Los sistemas utilizados en la columna fueron Benceno-Tolueno y Benceno-Tetracloruro de carbono con un rango de caudales de líquido entre 4,71 y 6,90 cm³/s. Se realizó el estudio de las características de un plato individual, determinando el grado de mezcla mediante un análisis de la función respuesta. También se estudió el comportamiento del plato como contactor gas-líquido. Se realizaron experimentos con cinco caudales de líquido y cada uno con seis caudales de gases. Se presenta además un modelo de burbujeo simple considerando burbujas con desplazamiento vertical y otro no perpendicular al plato. Se utilizaron los mismos caudales de gas y de líquido en la parte experimental, así como las ecuaciones teóricas y empíricas para el cálculo del Hol-up de gas. Favorablemente contribuye a uno de los objetivos de esta tesis que consiste en el diseño de los platos.

CONTRIBUCIONES AL MODELADO Y CONTROL DE LAS COLUMNAS DE DESTILACIÓN. Duro Carralero, Natividad. 2001

El resultado principal de la tesis es la obtención de un modelo dinámico más o menos realista de una columna de destilación continua, binaria y de platos, capaz de destilar todo tipo de mezclas. Este es un modelo seleccionado dinámico de tipo EMC, realizado con una estructura muy modular, que facilita mucho la generación de cualquier columna. En la tesis se ha desarrollado también una metodología de modelado de columnas, de forma tal que sea sencillo obtener la mejor columna de destilación para una mezcla dada en un punto de operación determinado, partiendo del conocimiento de muy pocos datos (datos en general relativos a la mezcla y a su componentes) y además datos fáciles de conseguir en la literatura. Se presenta también en la memoria, el modelo de la columna de laboratorio (planta UOP3CC de armefield). De esta forma, se muestra por un lado las limitaciones de la columna de laboratorio y por otro la flexibilidad del modelo de columna presentado inicialmente. Por último, se han probado distintas estrategias de control de calidad e inventario sobre algunas de las columnas en el trabajo, basándose en el modelo y la metodología desarrollados en él. Pueden considerarse aspectos típicos de control de las columnas, como puntos significativos de este proyecto.

2.2.- FUNDAMENTOS TEÓRICOS

A continuación se presentan las bases teóricas que fundamentan esta investigación.

2.2.1. - Equilibrio líquido-vapor.

Los métodos de destilación se aplicarán con éxito si se comprenden los equilibrios que existen entre la fase vapor y líquido de las mezclas encontradas. (Treybal, 2003).

2.2.1.1. Equilibrios a presión constante.

Considérese primero una sección típica a presión constante (**Figura Nº 1a**) la intersección de la superficie doble con el plano de presión constante produce una curva sin máximos o mínimos que se extiende desde el punto de ebullición de *B* puro hasta el de *A* puro a la presión considerada. La curva superior proporciona la relación entre la temperatura y la composición del vapor $(t - y^*)$, la curva inferior, la relación entre la temperatura y la composición del líquido (t - x). Las mezclas de líquido y vapor en el equilibrio están a la misma temperatura y presión, de forma que las líneas de unión, como la línea *DF* unen las mezclas en el equilibrio en *D* y *F*. Hay un número infinito de dichas líneas de unión para este diagrama. Una mezcla en la curva superior, como en *F*, es un vapor saturado. Una mezcla en *E* es una mezcla de dos fases, que consta de una fase líquida de

composición en *D* y una fase vapor de composición en *F*, en proporción tal que la composición promedio de toda la mezcla se representa mediante *E*. Las cantidades relativas de las dos fases en el equilibrio están relacionadas con los segmentos de la línea de unión, como se muestra en la **ecuación Nº 1**.

Figura Nº 1. Equilibrio a presión constante líquido-vapor

$$\frac{moles \cdot de \cdot D}{moles \cdot de \cdot F} = \frac{línea \cdot EF}{línea \cdot DE}$$
 Ecuación Nº 1.

Considérese una solución en G, en un recipiente cerrado que pueda mantenerse a presión moviendo un pistón. La solución está completamente líquida. Si se calienta, la primera burbuja de vapor se forma en H y tiene la composición en J, más rica en la sustancia más volátil; por lo tanto, la curva inferior se llama la curva de temperatura del punto de burbuja. Al irse evaporando más mezcla se forma más vapor a expensas de líquido; se origina entonces por ejemplo, líquido L y su vapor en equilibrio K, aunque la composición de la masa total es aún la original como en G. La última gota del líquido se evapora en M y tiene la composición N. El sobrecalentamiento de la mezcla sigue la trayectoria MO. La mezcla se ha evaporado en un rango de temperatura desde H hasta M, a diferencia de la temperatura única de evaporación de una sustancia pura. Entonces, el término punto de ebullición para una solución, generalmente no tiene significado puesto que la evaporación ocurre en un rango de temperatura, esto es, desde el punto de formación de la burbuja hasta el punto de formación de rocío. Si se enfría la mezcla en O, todos los fenómenos reaparecen en orden inverso. Por ejemplo, la condensación comienza en M, en donde la curva superior se conoce como la curva de punto de rocío y continua hasta H.

Por otra parte, si una solución como la que se encuentra en H, se hierve en un recipiente abierto y sus vapores escapan hacia la atmósfera, el residuo líquido se volverá cada vez más pobre, puesto que el vapor es más rico en la sustancia más volátil. La temperatura y la composición del líquido saturado residual se mueven a lo largo de la curva inferior hacia N, al continuar la destilación.

Las composiciones vapor-líquido en el equilibrio pueden mostrarse también sobre un diagrama de composición $(x \cdot vs \cdot y^*)$ como en la **Figura Nº 1b)**. Por ejemplo, el punto *P* sobre el diagrama representa la línea de unión *DF*. Dado que el vapor es más rico en la sustancia más volátil, la curva cae arriba de la diagonal 45º que se ha trazado como comparación. **(Treybal, 2003).**

2.2.1.2. Punto de Burbuja.

El punto de burbuja es la temperatura a la cual la primera burbuja de vapor aparece en el líquido mientras que la presión se mantiene constante.

2.2.1.3. Punto de Rocío.

La temperatura o de punto de rocío, es la temperatura a la cual el vapor comienza a condensarse por un proceso de enfriamiento, mientras que la presión y la razón de humedad se mantienen constantes (proceso isobárico).

2.2.2. Azeótropo.

Un azeótropo es una mezcla líquida que tiene un máximo o un mínimo en los puntos de ebullición, con relación a los puntos de ebullición de las composiciones de las mezclas a su alrededor. Los puntos de ebullición de los componentes puros presente en la mezcla deben ser lo suficientemente cercanos para permitir la formación de un azeótropo. Una mezcla cuyos componentes tienen puntos de ebullición cercanos puede formar un azeótropo cuando ocurren pequeñas desviaciones de las soluciones líquidas ideales. Una mezcla con puntos de ebullición distantes de sus componentes puede no formar un azeótropo, aún cuando constituya una mezcla líquida, con características considerablemente no ideales. Los azeótropos se presentan raras veces en las mezclas constituidas por componentes cuyos puntos de ebullición difieren en más de 30° C (45° F).

Un azeótropo es homogéneo sólo si está presente una fase líquida. El punto de ebullición máximo de un azeótropo homogéneo puede presentarse, si las desviaciones de la Ley de Raoult, dadas por la ecuación $K_i = \gamma_i^L \cdot P_i^{sat} / P$, son negativas $(\gamma_i^L < 1.0)$. Para que un azeótropo presente un punto de ebullición mínimo, es necesario que las desviaciones de la ley de Raoult sean positivas $(\gamma_i^L > 1.0)$. Si las desviaciones positivas son lo suficientemente grandes $(\gamma_i^L << 1.0)$ puede ocurrir la separación de las fases y se formará un azeótropo heterogéneo,

con un punto de ebullición mínimo y con una fase de vapor en equilibrio con las dos fases líquidas. La comprensión de la ocurrencia de azeótropos es importante por dos motivos. En primer lugar, los azeótropos no se pueden separar por destilación simple, en un intervalo particular de presión. Sin embargo, en segundo término, los azeótropos se pueden utilizar para separa mezclas que por lo general, no se separan por destilación simple, o bien, para incrementar el rendimiento de recuperación de algunos componentes presentes en ciertas mezclas. (Perry, 1997)

2.2.3. Destilación

Es un proceso en el cual una mezcla líquido-vapor de dos o más componentes son separadas mediante la aplicación de calor. La destilación se basa en que el vapor que ebulle de la mezcla es rico en el componente que tiene menor punto de ebullición. Luego el vapor es enfriado y condensado. Este líquido proveniente de la condensación contiene en mayor cantidad el componente mas volátil, y al mismo tiempo la mezcla original contiene en mayor cantidad el componente menos volátil. Una torre de destilación posee varias etapas. La separación de componentes de una mezcla líquida vía destilación depende de las diferencias en los puntos de ebullición de los componentes individuales. También, dependiendo de las concentraciones de los componentes presentes, la mezcla líquida tendrá diferentes puntos de burbuja. **(Treybal, 1.984)**.

2.2.3.1. Destilación contínua.

La alimentación se hace en uno o varios puntos de la torre. La diferencia de gravedad entre los dos estados hace que el líquido fluya hacia abajo de la columna cayendo en cascada a través de diferentes dispositivos, los cuales están diseñados para aumentar la interacción íntima entre las fases, estos pueden ser empaques (ubicados al azar u ordenados), bandejas o platos. El líquido que llega al calderín es vaporizado parcialmente y asciende a la columna. El resto es retirado como producto de fondo. El vapor que asciende es condensado cuando llega al tope. Una parte se extrae como producto destilado y el resto se introduce nuevamente en la columna. En este tipo de proceso la alimentación es continua, y no ocurren interrupciones a menos que se presente alguna falla operativa. **(Treybal, 1.984).**

2.2.3.2. Destilación por lotes.

El proceso de destilación por lotes es una operación para separar una cantidad especificada de una mezcla líquida (la carga) en productos. Es ampliamente utilizado en el laboratorio y en las unidades pequeñas de producción, aunque también en instalaciones de envergadura se pudiera utilizar este tipo de equipo.

El material a separa puede llevar consigo un alto contenido de sólidos, o bien, alquitranes o resinas que ensucien o atasquen una unidad continua. El uso de unidades discontinuas puede permitir apartar los desperdicios sólidos y retirarlos convenientemente al culminar el proceso. Sin embargo, debido a la naturaleza de este proceso de carga, descarga y limpieza de la columna, se requiere de una cantidad de tiempo considerable para realizar la separación de una mezcla determinada. Por esto, la destilación por carga se emplea cuando la cantidad a separar es pequeña o en las empresas donde se necesitan separar mezclas de diferentes características. Por lo general, se requiere de una inversión inicial mucho menor que para un proceso continuo, además es un proceso versátil para operar a pequeña escala.

La forma más simple consiste en un recipiente calentado, un condensador y uno o más tanque acumuladores. Se introduce material al recipiente que se denomina calderín y se llevan los líquidos hasta ebullición. Los vapores son condensados y recogidos en un acumulador. La relación de vaporización es controlada en ocasiones para evitar los "choques" de la carga y evitar que se sobrecargue el condensador.

El destilador simple por lotes proporciona sólo un plato teórico de separación. Para obtener productos con un rango estrecho de composiciones se usa un rectificador. Los componentes de esta unidad son: un calderín, una columna rectificadora, un condensador, un medio para dividir una porción del destilado como reflujo y uno o más acumuladores.

La temperatura del destilado se controla para hacer regresar el reflujo cerca de la temperatura de la columna, con el fin de permitir una aproximación verdadera de la cantidad de reflujo y mejorar el funcionamiento de la misma. A continuación se emplea un intercambiador de calor para llevar el destilado a recolectar hasta el subenfriamiento. Los métodos de diseño de equipos para los componentes de destiladores por lotes, con excepción del calderín, siguen los mismos principios que los de las unidades continuas, pero se debe verificar el diseño en más de un punto de una mezcla, puesto que la composición cambia en la columna conforme avanza la destilación. El diseño del calderín se basa en el tamaño del lote y la relación necesaria de vaporización.

En un proceso por lotes, se introduce al rehervidor una carga de líquido y se debe llevar primero el sistema al estado estacionario a reflujo total. Posteriormente se retira en forma sucesiva una porción del producto superior, de conformidad con el reflujo establecido. A medida que transcurre el tiempo, la composición del material que se destila se va haciendo cada vez menos concentrada en el componente más volátil y se detiene la destilación de un corte cuando el destilado acumulado alcanza la composición promedio deseada.

En una destilación con rectificación típica en operación por carga, el líquido que se va a procesar se carga en un tanque rehervidor, sobre el cual está colocada una columna de platos equipada con un condensador. Una vez que el líquido inicial ha sido alimentado, no se agrega más carga durante el proceso. El líquido se lleva a ebullición en el recipiente inferior y los vapores ascienden a través de la columna. (Perry, 1.997)

2.2.4. Parámetros a Considerar en el Diseño de Equipos de Transferencia de Masa.

Previo a realizar el diseño de un equipo, deben estar bien definidas la presión de trabajo, la temperatura, velocidades de flujo y composición de la alimentación, de manera que el problema de diseño consista únicamente en construir un dispositivo que lleve a cabo la operación que se desee y sea económico, seguro y fácil de operar.

Entre los parámetros de diseño más importantes cabe destacar: la capacidad del equipo, la caída de presión, costos, facilidad de operación y eficacia. (Marcilla, 2005).

2.2.4.1. Capacidad. Los datos de equilibrio de un sistema establecen el número de etapas de contacto necesarias para producir una determinada separación. Aunque este número de etapas es independiente del flujo de la alimentación, las dimensiones físicas del equipo (particularmente el diámetro) aumentarán proporcionalmente con el flujo que circule a su través, siendo tales dimensiones función de la hidrodinámica y del tiempo que se precisa en cada etapa. Es importante que una columna esté diseñada para operar con un intervalo de composiciones y flujos tan alto como sea posible. Los parámetros estructurales, tales como la relación (altura/diámetro), deciden con frecuencia la posibilidad de realización práctica. (Marcilla, 2005)

2.2.4.2. Caída de presión. Este parámetro es particularmente importante

cuando es preciso operar en condiciones de alto vacío (posibilidad de descomposiciones térmicas o de reacciones químicas no deseadas).

Los métodos para estimar la conducta dinámica de los fluidos en los platos de flujo cruzado son análogos, tanto si los platos son de cachucha, como malla o válvula. La caída total de presión en un plato se define mediante la ecuación general (véase la **Figura Nº 2**).

Figura Nº 2. Contribución de caída de presión para platos de flujo cruzado h_d = caída de presión a través de la cachucha o malla, altura equivalente de líquido en el plato; hw = altura de vertedero o bajante; how = cresta de vertedero o bajante; hs = sello de líquido estático; h_{hg} = gradiente hidráulico; y h_{da} = pérdida bajo el conducto de flujo descendente.

2.2.4.3. Costos. La evaluación de los costos de columnas para evaluaciones preliminares de procesos requiere que se tome en consideración no sólo el tipo básico de elementos internos, sino también sus efectos sobre el costo del sistema en general. Por ejemplo, para un sistema de destilación, el sistema general puede incluir, el recipiente (columna) estructuras accesorias, soportes y cimentaciones, dispositivos auxiliares como rehervidores, condensadores, precalentadores de la
alimentación e instrumentos de control y tuberías de conexión. La elección de los componentes internos influye en todos esos costos, pero hay otros factores que lo afectan también. Una optimización completa del sistema requiere un modelo completo de simulación de procesos, que puede cubrir todas las variables pertinentes que influyen en la economía.

También son de gran importancia los servicios (electricidad, vapor y agua de refrigeración). (Perry, 1997)

2.2.4.4. Facilidad de operación. En todo proceso hay un número importante de potenciales problemas de operación.

En el caso de la utilización de las *columnas de relleno* para poner en contacto una fase *líquida* con una fase *vapor*, los problemas más comunes que pueden presentarse son:

Inundación. Esta condición ocurre cuando las velocidades del vapor y /o el líquido son tan grandes que la caída de presión del gas es superior a la carga neta de gravedad del líquido, que de esta forma es arrastrado hacia arriba en la columna.

Puesto que la inundación, o la inversión de fases, representan normalmente la condición de capacidad máxima para una columna empacada, es conveniente predecir su valor para nuevos diseños. La primera correlación generalizada de puntos de inundación para columnas empacadas la desarrollaron Sherwood, Shipley y Holloway sobre la base de mediciones de laboratorio, obteniendo como resultado la relación:

$$\left(\frac{U_t^2 a_p \rho_g}{g \varepsilon^3 \rho_t}\right) \mu_t^{0.2} = función \left(\frac{L}{G} \sqrt{\frac{\rho_g}{\rho_t}}\right)$$
 Ecuación Nº 2.

Las unidades convenientes para la ecuación son:

 $U_{t} = \text{Velocidad superficial del gas, m/s.}$ $a_{p} = \text{Årea total del empaque, m}^{2} \text{ (m}^{3} \text{ de lecho).}$ $\varepsilon = \text{Fracción de espacios vacíos en el empaque seco}$ $g = \text{Constante gravitacional, 9,8067 m/s}^{2}.$ $\rho_{t} \cdot y \cdot \rho_{g} = \text{Densidad del gas y del líquido, Kg/m}^{3}$ $L = \text{Gasto o masa velocidad del líquido, Kg/(sm^{2})}$ $G = \text{Gasto o masa velocidad del gas, Kg/(sm^{2})}$ $\mu_{t} = \text{Viscosidad del líquido, mPa.s (cP)} \text{ (Perry, 1997)}$

Canalización. La función del relleno es promover la turbulencia de los fluidos y la transferencia de materia mediante la dispersión del líquido que fluye sobre la superficie del relleno y por el interior del mismo. Si el flujo del líquido y/o vapor es muy bajo, o si la alimentación líquida no se distribuye uniformemente sobre el relleno, tenderá a descender por las paredes mientras que el vapor circula por la parte central. A velocidades muy bajas puede no haber suficiente líquido para mojar la superficie del relleno.

La inundación y la canalización restringen los intervalos de los flujos de líquido y vapor para la operación de la columna, marcando el límite máximo de operación. Consideraciones de tipo práctico (como fijar una eficacia mínima y una caída de presión máxima) limitan aún más el intervalo de trabajo. (Marcilla, 2005).

Formación de espuma. Si se forma un nivel de espuma elevado, el líquido es arrastrado por el gas hasta la etapa siguiente y las eficacias de separación disminuyen. Por otra parte, la espuma puede también arrastrar vapor hacia la etapa inferior. En casos extremos, los bajantes del líquido se pueden llenar totalmente de espuma y provocar inundación de una forma análoga a lo que ocurre en columnas de relleno. Por otra parte, las columnas de platos pueden inundarse aún cuando no se forme espuma si las caídas de presión o las velocidades de flujo del líquido son suficientemente grandes para que el nivel de líquido sobrepase el espaciado entre los platos, dando lugar a retroceso del líquido en los tubos de descenso. (Marcilla, 2005).

- Arrastre. Aún cuando el nivel de espuma formado sobre el líquido del plato no es muy alto, si la separación del líquido y el vapor que se han puesto en contacto es inadecuada, parte de esa espuma se mezcla con el líquido del plato superior, disminuyendo así la eficacia. El arrastre se debe con frecuencia a un tamaño inadecuado de los tubos de descenso del líquido o del espaciado entre los platos. (Marcilla, 2005)
- Mala distribución del líquido. Si los platos de la columna son muy grandes o están mal diseñados puede variar la altura del líquido sobre el plato dando lugar a un apreciable gradiente hidráulico. Esto puede provocar un flujo no uniforme del gas. Las medidas habituales de prevención consisten en utilizar varios tubos descendentes o pasos y divisiones en los platos, o bien dirigir el flujo de vapor de forma que fuerce el líquido a circular a través del plato.
- Goteo. Muchos platos sólo cuentan con la presión del gas para mantener el líquido sobre el plato, de forma que en el punto de goteo, comienza a caer líquido a través de los orificios de los platos. El caso extremo recibe el nombre de vaciamiento. (Marcilla, 2005)

2.2.4.5. Eficacia. La eficacia de una columna de platos se mide en función de la eficacia del plato, es decir, en función de la diferencia existente entre la composición de las corrientes que abandonan una etapa con respecto a las composiciones de las mismas en el caso de que estuviesen en equilibrio. La eficacia de una columna de relleno se mide en función de la eficacia del relleno, que es inversamente proporcional a la altura equivalente a un plato teórico (HETP). Los valores de la eficacia de los platos y de la HEPT son funciones complejas de muchos factores: temperatura, presión, composición, densidad, viscosidad, difusividad, velocidades de flujo del líquido y vapor, tendencia a la formación de espuma, turbulencia del líquido y del vapor y tamaño de las burbujas. **(Marcilla, 2005).**

2.2.5. Columnas Empacadas

El diseño de una columna de relleno o empacada supone las siguientes etapas:

1. Seleccionar el tipo y el tamaño del relleno.

2. Determinar el diámetro de la columna (capacidad) necesario en función de los flujos de líquido y vapor.

 Determinar la altura de la columna que se necesita para llevar a cabo la separación específica.

4. Seleccionar y diseñar los dispositivos interiores de la columna: distribuidor del líquido de alimentación, redistribuidores de líquido, platos de soporte y de inyección del gas y platos de sujeción.

2.2.5.1.- Tipos de relleno

Los principales requisitos que debe cumplir el relleno de una columna son:

 a) Proporcionar una gran área superficial: área interfacial alta entre el gas y el líquido.

b) Tener una estructura abierta: baja resistencia al flujo de gas.

c) Facilitar la distribución uniforme del líquido sobre su superficie.

d) Facilitar el paso uniforme del vapor a través de toda la sección de la columna.

Para satisfacer estos requerimientos se han desarrollado distintos tipos de relleno. Se pueden dividir en dos grupos: relleno ordenado (dispuesto de una forma regular dentro de la columna) y relleno al azar.

Los primeros (rejas, mallas, rellenos ordenados) tienen una estructura abierta, y se usan para velocidades de gas elevadas donde se necesita una pérdida de presión baja (por ejemplo en las torres de enfriamiento). La interfase vapor-líquido es estacionaria y depende fundamentalmente del mojado de la superficie y la capilaridad. Por tanto, es de esperar que haya buena eficacia aún para flujos de líquido bajos.

Los rellenos al azar son más comunes. Con este tipo de relleno (al igual que en las columnas de platos), la interfase de vapor-líquido se crea por combinación de los efectos de penetración de superficie, burbujeo y formación de niebla. En la **Figura Nº 3** se muestran los principales tipos de rellenos comerciales.

Figura Nº 3. Diversos tipos de rellenos comerciales comunes.

Cada uno de estos tipos tiene sus características de diseño-tamaño, densidad, área superficial, factor de relleno (constante determinada experimentalmente, relacionada con el cociente entre el área del relleno y el cubo de la fracción hueca del lecho, que se utiliza para predecir la caída de presión y la inundación del lecho en función de las velocidades de flujo y de las propiedades de los fluidos). Estas propiedades se pueden encontrar tabuladas en distintos manuales. Por ejemplo la **Tabla Nº 1** muestra estos datos para una serie de rellenos.

Los anillos Raschig son el tipo de relleno más antiguo (data de 1915) y todavía están en uso. Los anillos Pall son esencialmente anillos Raschig en los que se ha aumentado la superficie de contacto, con lo que se mejora la distribución del líquido.

Las sillas Berl fueron desarrolladas para mejorar la distribución del líquido comparada con los anillos Raschig. Las sillas Intalox pueden considerarse como una mejora de las Berl, ya que por su forma es más fácil de fabricar.

Tabla Nº 1. Datos de diseño para diferentes rellenos

	Tamaño		Densidad	Area	Factor de relleno
	Pulgadas	mm	(Kg/m ³)	(m²/m³)	F _p
Anillos Rasching	0.50	13	881	368	640
Cerámica	1.0	25	673	190	160
	1.5	38	689	128	95
	2-0	51	651	95	65
	3.0	76	561	69	36
Metal	0.5	13	1201	417	300
(densidad del acero al carbono)	1-0	25	625	207	115
	1.5	38	785	141	83
	2-0	51	593	102	57
	3.0	76	400	72	32
Anillos Pall	0-625	16	593	341	70
Metal	1-0	25	481	210	48
(densidad del acero al carbono)	1.25	32	385	128	28
(,	2.0	51	353	102	20
	3.5	76	273	66	16
Plásticos	0.625	16	112	341	97
(densidad del polipropileno)	1-0	25	88	207	52
()	1-5	38	76	128	40
	2-0	51	68	102	25
	3-5	89	64	85	16
Sillas Intalox	0-5	13	737	480	200
Cerámica	1-0	25	673	253	92
	1.5	38	625	194	52
	2.0	51	609	108	40
	3.0	76	577		22

Para construir estos rellenos se utilizan diversos materiales: cerámica, metales, plásticos y carbono. Los anillos de metal y plástico son más eficaces que los de cerámica puesto que sus paredes pueden ser más finas.

La elección del material dependerá de la naturaleza del fluido y la temperatura de operación: el empaquetado cerámico es útil para líquidos corrosivos pero no para disoluciones fuertemente alcalinas. El plástico es atacado por algunos disolventes orgánicos y sólo debe usarse cuando no se sobrepasan temperaturas moderadas. Tanto el relleno metálico como especialmente el cerámico se pueden romper fácilmente.

En general, el mayor tamaño de relleno aceptable en una columna es de 50 mm. Los tamaños más pequeños son más caros que los mayores, pero por encima de 50 mm la eficacia en la transferencia de materia disminuye considerablemente.

El uso de partículas de relleno demasiado grandes puede causar una distribución pobre del líquido. (Marcilla, 2005).

2.2.5.2. Diámetro de la Columna

La capacidad de una columna de relleno viene determinada por su sección transversal. Normalmente, la columna se diseñará para operar con la pérdida de carga que resulte más económica y que asegure una buena distribución del líquido y del gas. Para columnas con relleno al azar, la pérdida de carga normalmente no excede los 80 mm H₂O por m de altura de relleno. En estas condiciones, la velocidad del gas será de, aproximadamente, un 80 % la velocidad de inundación. Los valores recomendados en absorbedores son de 15 a 50 mm H₂O/m de altura de relleno y en destilación a presiones moderadas de 40 a 80 mm H₂O/m de altura de relleno. Para destilaciones a vacío, la máxima pérdida de carga se determinará en función de los requerimientos del proceso, aunque para una distribución satisfactoria del líquido la pérdida de carga no debiera ser menor de 8 mm H₂O/m.

La sección de la columna y su diámetro para una pérdida de carga seleccionada puede determinarse a partir de la gráfica presentada en la **Figura 4**, donde se correlaciona la relación entre las velocidades de flujo del líquido y el vapor, las propiedades físicas del sistema y las características del empaquetado, con el flujo másico de gas por unidad de área para distintos valores de la pérdida de carga.

Los valores del factor de flujo F_{LV} dados en la **Figura Nº 4** cubren el intervalo habitual de trabajo.

Una vez que se conoce el valor de V_w^* es fácil conocer el área de la columna que se necesita para cada flujo de gas: conocido por la separación deseada la relación V^*/L^* (kg de gas/kg de líquido), se puede calcular la abscisa y si se fija la pérdida de presión aceptable se puede calcular K_4 , de ella V^* y por tanto la sección.

Figura Nº 4. Correlación generalizada de la pérdida de carga. El término K_4 en la **Figura Nº 5** es la función:

$$K_{4} = \frac{42.9 \cdot (V_{W}^{*})^{2} \cdot Fp \cdot (\mu_{L}/\rho_{L})^{0.1}}{\rho_{V} \cdot (\rho_{L} - \rho_{V})}$$
 Ecuación Nº 3.

Donde:

 V_{W}^{*} = flujo másico del gas por unidad de área (kg/m²s)

Fp = factor de relleno, propio del relleno seleccionado (Adm.)

 μ_L = viscosidad del líquido, Ns/m²

 $\rho_{\rm \tiny L}, \rho_{\rm \tiny V}$ = densidades del líquido y el vapor, kg/m³

(Marcilla, 2005).

2.2.5.3. Altura del Lecho Empacado

Para diseñar una columna de rectificación de relleno, el tratamiento más simple es considerar que se trata de una columna de pisos y utilizar el concepto

de altura equivalente de un plato teórico (HETP). La HETP es la altura de relleno que produce la misma separación que una etapa de equilibrio. En destilación, este valor es esencialmente constante para un tipo y tamaño de relleno e independiente de las propiedades físicas del sistema. Por ejemplo, se pueden utilizar los siguientes valores de HETP para calcular la altura del lecho cuando el relleno es de anillos Pall: 0.4-0.5 m si los anillos tienen un tamaño de 25 mm, 0.6-0.75 m si son de 38 mm y 0.75-1.0 si son de 50 mm.

Para el diseño de las columnas de absorción de relleno se suelen utilizar los conceptos de número de unidades de transferencia y altura de una unidad de transferencia (HTU). Valores típicos de HTU para empaquetamientos al azar son: 0.3-0.6 m si el relleno tiene un tamaño de 25 mm, 0.5-0.75 m si el relleno tiene un tamaño de 38 mm y 0.6-1.0 m si es de 50mm.

Para conocer la altura necesaria de la columna bastará con determinar el número de pisos necesarios y su HETP o bien el número de unidades de transferencia y su HTU.

✓ Concepto de unidad de transferencia. Puesto que las composiciones del vapor y el líquido cambian diferencialmente en una columna empacada, la dificultad de separación que se debe realizar se da en unidades de transferencia más que en platos teóricos. La importancia y la deducción del concepto de unidad de transferencia en base a la concentración de fuerzas impulsoras de fase-gas N_{og} se pueden obtener mediante la integración grafica de la ecuación que sigue:

$$N_{og} = \int_{y_o}^{y_p} \frac{dy}{y^\circ - y}$$
 Ecuación N^o 4.

El procedimiento implica trazar valores de $1/(y^o - y)$ en definición de valores supuestos de *y* escogidos a intervalos razonables entre y_o y y_p , la concentración inferior y la superior en la columna, entre las que se desea conocer N_{og} . Cada valor de y^o es la composición de vapor en equilibrio que corresponde al mismo valor de *x* como cada uno de los valores escogidos de *y*. La altura de la columna empacada Z_p está dada por la ecuación:

$$Z_p = H_{og} N_{og}$$
 Ecuación N^o 5.

donde H_{og} representa la altura de la unidad total de transferencia, basada en la fuerza impulsora de la concentración en la fase gaseosa. Otra manera de determinarla sería:

$$Z_{p} = \int_{0}^{y_{p}} H_{og} \frac{dy}{y^{\circ} - y}$$
 Ecuación N^o 6.

A pesar de que el uso de las unidades de transferencia es, a menudo, más exacto que uso de los platos teóricos, en el diseño de las columnas empacadas se puede decir que este tipo de columnas son equivalentes a las que tienen cierto numero de platos teóricos. En las zonas una columna donde la línea de operación y la línea de equilibrio son rectas, la *HETP* esta relacionada con la H_{og} por la expresión:

$$HETP = \frac{H_{og} \ln(mV/L)}{(mV/L) - 1}$$
 Ecuación Nº 7.

donde *m* representa la pendiente de la curva de equilibrio, y V y *L* son las velocidades molares de líquido y gas, respectivamente.

Si el término mV/L (es decir, la razón de la pendiente de la curva de equilibrio respecto a la pendiente de la curva de operación)

es igual a 1; la unidad de transferencia y el plato teórico son idénticos; si el valor de mV/L se encuentra entre 0.9 y 1.1, la diferencia entre la unidad de transferencia y el plato teórico es significativo. Por consiguiente, las columnas empacadas altas, en las que las separaciones son difíciles y las líneas de operación son casi paralelas a la curva de equilibrio, los platos teóricos se pueden utilizar para la caracterización de la separación obtenida. (Perry, 1997)

2.2.6. DESTILACION DIFERENCIAL.

La destilación diferencial es una operación intermitente en la que la mezcla a destilar se carga en la caldera, donde se suministra el calor necesario para llevarla a su temperatura de burbuja. En ese instante comienza la ebullición, que se mantiene mientras se va eliminando continuamente el vapor generado. Este vapor se condensa en el exterior dando lugar al producto destilado. Conforme transcurre el proceso se va modificando la composición del líquido, ya que se eliminan preferentemente el componente más volátil, con lo cual va aumentando, consiguientemente, la temperatura de burbuja de la mezcla. Lógicamente, el vapor (siempre en equilibrio con el líquido en la caldera) también cambiará continuamente su composición, empobreciéndose en el componente más volátil. El calor debe suministrarse en la caldera de modo que en todo instante el vapor generado esté en equilibrio con el líquido en la caldera. Debe por tanto compensar las pérdidas, el calor latente de vaporización y el calor sensible del líquido. Estas condiciones pueden ser difíciles de conseguir en la práctica. El proceso se continúa hasta que se alcanza la separación deseada. Este tipo de destilación se usa frecuentemente en trabajos de laboratorio y en plantas piloto. El destilado puede recogerse en distintos recipientes, en función de su composición. También

se utiliza con fines analíticos en caracterización de fracciones de petróleo o distintos productos (por ejemplo en algunas normas ASTM para la determinación de intervalos de destilación).

Para el caso de una mezcla binaria, la relación entre la cantidad de líquido inicial $F = w_0$ y el líquido al final de la destilación w, viene dada por la ecuación de **Lord Rayleigh**, la cual resulta de efectuar un balance de materia en el proceso: sea una mezcla de dos componentes solubles, se designa por w al número total de moles de la misma, por x_w a la fracción mol del componente más volátil del líquido y por y^* a la fracción molar del mismo componente en el vapor de equilibrio con el líquido original. Sean dw los moles que hay que vaporizar; el líquido perderá una cantidad diferencial del componente más volátil y el vapor lo ganará.

Balance de materia:

$$(w-dw)(x-dx)+(y^*+dy)dw=wx$$
 Ecuación Nº 8.

Resolviendo la ecuación y despreciando el producto de diferenciales, se tiene:

$$\frac{dw}{w} = \frac{dx}{y^* - x}$$
 Ecuación Nº 9.

Integrando entre límites se llega a la ecuación de Lord Rayleigh.

$$\ln \frac{F}{w} = \int_{x}^{x_0} \frac{dx}{y^* - x}$$
 Ecuación Nº 10.

Donde $F = w_0$ = moles de carga inicial.

w = moles de carga residual después de haber destilado

 x_0 = fracción mol del componente más volátil en la carga inicial.

x = fracción mol del componente más volátil en la carga residual.

2.2.7. Columna de Platos

La columna o torre de platos es un equipo necesario para la rectificación por lotes, ya que permite el contacto íntimo entre las dos fases en la superficie de los platos que poseen perforaciones, a fin de que se lleve a cabo la difusión interfacial de los componentes.

Independientemente del tipo de alimentación (continua o por carga), el líquido cae en la superficie del plato y fluye descendentemente por efecto de la gravedad; al mismo tiempo, el vapor asciende a lo largo del equipo y se difunde en el seno del líquido al pasar a través de las perforaciones de los platos, con la consecuente formación de burbujeo; al abandonar las burbujas, el vapor pasa al plato superior. El efecto global es un contacto múltiple en contracorriente entre el vapor y el líquido, aunque cada plato se caracteriza por el flujo transversal de los dos. Para fines de diseño, se parte de la suposición de que en cada plato se alcanza el equilibrio termodinámico entre las fases líquida y gaseosa. De esta manera, cada plato en la torre es considerado como una etapa de equilibrio.

Finalmente, luego que las fases se ponen en contacto etapa a etapa, los productos más volátiles se obtienen por el tope en forma de vapor, mientras que los más pesados descienden por la torre en forma de líquido; se habla así de productos de tope y productos de fondo. El producto se hace pasar a través de un condensador que puede ser total o parcial; una fracción del producto condensado se hace recircular a la columna, alimentándose a un plato por encima del plato de alimentación, a fin de mantener el equilibrio líquido vapor en la torre. De forma similar, el líquido de fondo se introduce en un evaporador y una fracción del vapor

producido se hace recircular a la torre con el mismo fin de mantener las condiciones de equilibrio.

Si se necesita realizar el análisis de una separación de líquidos de una mezcla de dos o más componentes en una columna de destilación por carga, se debe tener en cuenta que el análisis se debe separar en dos períodos: periodo de preparación (reflujo total) y periodo de producción (reflujo dado).

La etapa de preparación o acondicionamiento comienza una vez que la carga se alimenta al sistema. Para este período se específica: el número de etapas, la carga del rehervidor, la presión en la columna y la condición de reflujo total (D = 0, B = 0). Esta fase del proceso ocurre hasta que se logre el estado estacionario, lo cual toma cierta cantidad de tiempo, después comienza el período de producción donde ocurre la salida de destilado según la relación de reflujo inicialmente colocada.

Debido a que el destilado que se va a separar es más rico en los componentes más volátiles que el residuo en el rehervidor, este residuo empobrecerá en sus componentes más volátiles a medida que la destilación progresa. Como el número de etapas de equilibrio en la columna es constante, la concentración del componente más volátil en el destilado disminuirá conforme la concentración disminuye en el rehervidor si la cantidad de reflujo se mantiene constante. (Treybal, 1984)

2.2.8. Método de McCabe Thiele para la Resolución de Problemas de Diseño.

2.2.8.1. Líneas de operación: El método de McCabe Thiele se basa en la representación de las ecuaciones de balance de materia como las líneas de operación en el diagrama x - y. Las líneas se hacen rectas (y se evita la necesidad del balance de energía) mediante la suposición de que hay un derrame

molar constante. Se supone que el flujo de la fase líquida es constante de bandeja a bandeja en cada sección de la columna entre el punto de adición (alimentación) y el de retiro (producto). Si el flujo del líquido es constante, el flujo de vapor tendrá que ser también constante.

La suposición del derrame molar constante representa varias suposiciones. La más importante de ellas es la de calores molares de vaporización iguales para los dos componentes. Las otras suposiciones son la de que la operación es adiabática y que no hay efectos de calor de mezcla o de calor sensible. El efecto de las suposiciones sobre el método de cálculo se puede ilustrar mediante la **Figura Nº 5**, que muestra dos envolventes de balance de materia que cortan la sección superior de la columna. Si se supone que la velocidad L_{n+1} es idéntica a L_{n-1} , entonces se tendrá que $V_n = V_{n-2}$ y el balance de materiales de componentes para las dos envolventes 1 y 2 se puede representar por medio de:

$$y_n = \frac{L}{V} \cdot x_{n+1} + \frac{D}{V} \cdot x_D$$
 Ecuación Nº 11.

donde *y* y *x* tienen subíndices de etapa *n* y *n*+1 pero *L* y *V* se deben identificar sólo con la sección de la columna a la que se aplican. La **Ecuación Nº 11** tiene la forma analítica de una línea recta; L/V es la pendiente y Dx_D/V es la intersección *y* en $x_1 = 0$.

Se puede escribir una ecuación similar para la sección del fondo de la columna.

Para la envolvente que se muestra en la Figura Nº 6.

$$y_n = \frac{L}{V^n} \cdot x_{m+1} + \frac{B}{V} \cdot x_B$$
 Ecuación Nº 12.

donde se utiliza el subíndice *m* para identificar el número de etapa en la sección del fondo.

Figura Nº 5. Dos envolventes de balance de materia en la sección superior de una columna de destilación.

Figura Nº 6. Envolventes de balance de materia en torno al extremo inferior de la columna de destilación. El rehervidor parcial es la etapa de equilibrio 1.

La ecuaciones como la **Ecuación Nº 11** y la **Ecuación Nº 12**, cuando se traza en el diagrama x - y, proporcionan un juego de líneas que se denominan de operación. Un punto en la línea de operación representa dos corrientes que pasan, y la línea de operación misma es el sitio de todos los pares posibles de corrientes de paso dentro de la sección de la columna a la que se aplica la línea.

Se puede localizar una línea de operación si 1) se conocen dos puntos de la línea o 2) se conoce un punto y la pendiente. Los puntos conocidos en una línea de operación suelen ser su intersección con la diagonal x - y o su intersección con otra línea de operación.

La pendiente L/V de la línea de operación se denomina razón de reflujo mínimo. Esta razón, en la ecuación de la línea de operación para la sección superior de la columna se relaciona con la razón de reflujo externo $R = L_{N+1}/D$ por medio de:

$$\frac{L}{V} = \frac{L_{N+1}}{V_N} = \frac{RD}{(1+R)D} = \frac{R}{(1+R)}$$
 Ecuación Nº 13.

cuando la corriente de flujo L_{N+1}/D es un líquido saturado.

Condición térmica de la alimentación: La pendiente de la línea de operación cambiará siempre que pase una alimentación o una corriente lateral. Para calcular este cambio es conveniente introducir una cantidad q que se define mediante las ecuaciones que siguen para una corriente de alimentación F:

$$\dot{L} = L + qF$$
 Ecuación Nº 14.

$$V = V' + (1-q)F$$
 Ecuación Nº 15.

Los apóstrofos denotan las corrientes por debajo de la etapa en que se introduce la alimentación. La q es la medida de la condición térmica de la alimentación y representa los moles de líquido saturado que se forman en la etapa de alimentación por mol de material alimentado.

Las diversas condiciones térmicas posibles de la alimentación son las siguientes:

Vapor sobrecalentado q < 0Vapor saturado q = 0Parcialmente evaporada 1 > q > 0Líquido saturado q = 1Líquido subenfriado q > 1

En la **Tabla Nº 2** se pueden apreciar todas las condiciones térmicas con más detalles.

					-	-	
Condición de la mezcla de alimentación	$G_{F'} \ mol \ lpha rea \cdot tiempo$	$L_{F'} \over {mol \over \acute{a}rea \cdot tiempo}}$	${H_{GF'}\over mol}$	$H_{LF'} \over rac{energía}{mol}$	$H_{F'} \over rac{energía}{mol}$	$q = \frac{H_G - H_F}{H_G - H_L}$	$\frac{q}{q-1}$
Líquido debajo del punto de burbuja	0	F		H_{F}	$H_F < H_L$	>1.0	>1.0
Líquido saturado	0	F		H_{F}	H_{L}	1.0	8
Mezcla de líquido y vapor	$G_{F'}$ $F = G_F + L_F$	L_F	H_{G}	H_{L}	$H_G > H_F > H_L$	$\frac{L_F}{F}$ $1.0 > q > 0$	$\frac{L_F}{L_F - F}$
Vapor saturado	F	0	H_{F}		H_{G}	0	0
Vapor sobrecalentad o	F	0	H_{F}		$H_F > H_G$	<0	$1.0 > \frac{q}{q-1} > 0$

Tabla Nº 2. Condiciones té	érmicas de la me	zcla de alimentación
----------------------------	------------------	----------------------

El valor de q para una alimentación dada se puede estimar a partir de:

$$q = \frac{energ(a \cdot para \cdot convertir \cdot 1 \cdot mol \cdot de \cdot a \lim entación \cdot en \cdot vapor \cdot saturado}{calor \cdot molar \cdot de \cdot vaporización}$$

Se pueden escribir ecuaciones análogas a la **Ecuación Nº 16** y **Ecuación Nº 17** para una corriente lateral, pero q será siempre 1 o 0, según que la corriente lateral se tome de la corriente de líquido o la de vapor.

La *q* se puede utilizar para deducir la ecuación de línea *q* para una alimentación o una corriente lateral. La "línea *q* de alimentación" es el sitio de intersección de todos los puntos de las dos líneas de operación que se encuentran en la etapa de alimentación o corriente lateral. Esta intersección se debe producir a lo largo de la sección de la línea *q* entre la curva de equilibrio y la diagonal x = y. En el punto de intersección por encima de la etapa de alimentación (o corriente lateral) como la que se encuentra por debajo de la etapa de alimentación o corriente lateral. Al restar una ecuación de la otra se obtiene, para una etapa de alimentación

$$(V - V')y = (L - L')x + Fx_F$$
 Ecuación Nº 16.

que, cuando se combina las ecuaciones **Ecuación Nº 16** y **Ecuación Nº 17** da la ecuación de la línea q

$$y = \frac{q}{q-1} \cdot x - \frac{x_F}{q-1}$$
 Ecuación Nº 17.

En la **Figura Nº 7** se muestra una construcción típica de la línea q para una alimentación parcialmente vaporizada. Se puede demostrar con facilidad que la línea q debe intersecar la diagonal x_F . La pendiente de la línea q es q/(q-1). Todos los casos de las 5 líneas q se muestran en la **Figura Nº 8. (Perry, 1997)**

Figura Nº 7. Intersección típica de las dos líneas de operación en la línea q para una etapa de alimentación. La línea q que se muestra corresponde a una alimentación parcialmente vaporizada.

Figura Nº 8. Los cinco casos de las líneas q: (1) Vapor sobrecalentado q < 0, (2) Vapor saturado q = 0, (3) Parcialmente evaporada 1 > q > 0, (4) Líquido Saturado q = 1, (5) Líquido Subenfriado q > 1.Pendiente de la línea q = q/(q-1).

2.2.8.2. Construcción de la etapa de equilibrio. En la Figura Nº 9. se muestra el uso alternativo de la curva de equilibrio y la línea de operación para levantar etapas de equilibrio. Las porciones trazadas de la curva de equilibrio (curvadas) y la línea de operación (recta) cubren la gama de composiciones que

existen en la sección de la columna que se muestra en la esquina inferior derecha. Si y_n y x_n representan las composiciones (en función del componente más volátil) del vapor y el líquido en equilibrio que salen de la etapa n, entonces el punto (y_n, x_n) en la curva de equilibrio debe representar la etapa de equilibrio n. La línea de operación es el sitio para las composiciones de todos los pares posibles de corrientes de paso dentro de la sección y, por consiguiente, una línea horizontal (de guiones) en y_n debe pasar por el punto (y_n, x_{n+1}) de la línea de operación, puesto que y_n y x_{n+1} representan corrientes de paso. De modo similar, la línea vertical (de guiones) en x_n , debe intersecar la línea operacional en el punto (y_{n-1}, x_n) . Las etapas de equilibrio por encima y por debajo de la etapa n se pueden localizar mediante una línea vertical a través de (y_n, x_{n+1}) para encontrar (y_{n+1}, x_{n+1}) y una línea horizontal a través de (y_{n-1}, x_n) para encontrar (y_{n-1}, x_{n-1}) . Se puede ver que es factible trabajar hacia arriba o hacia abajo de la columna, modificando el empleo de la línea de operación y la de equilibrio.

Figura Nº 9. Ilustración del modo en que se pueden localizar etapas de equilibrio en el diagrama x - y mediante el uso alternativo de la curva de equilibrio y la línea de operación.

2.2.8.3. Construcción de la columna total. En la Figura Nº 10 se muestra la construcción gráfica de una columna completa. El proceso trazado gráficamente se representa en la esquina inferior derecha del diagrama. Se trata de una columna existente con un número de bandejas reales equivalente a ocho etapas de equilibrio. Se utiliza un rehervidor parcial (equivalente a una etapa de equilibrio) y un condensador total.

Figura Nº 10. Construcción para una columna con una alimentación de punto de burbuja, un condensador total y un rehervidor parcial.

2.2.8.4. Localización de la etapa de alimentación. El sitio óptimo para la localización de la etapa de alimentación es el lugar que, con un conjunto dado de otras especificaciones operacionales, dará como resultado la mayor separación entre x_D y x_B con un número dado de etapas. O bien, si no es especifica el número de etapas, el sitio óptimo de alimentación es el que requiere el número más bajo de etapas para lograr una separación especifica entre x_D y x_B . Siempre satisfará cualquiera de esos criterios si se utiliza en cada etapa la línea de operación más alejada de la curva de equilibrio como se indica en la **Figura Nº 10**.

A partir de la **Figura Nº 10.** se puede ver que el sitio óptimo de alimentación hubiera sido la quinta bandeja para esta operación. Si se estuviera diseñando una nueva columna, esa hubiera sido la elección del diseñador. No

obstante cundo se modela una columna existente, la etapa de alimentación en el diagrama debe corresponder tan estrechamente como sea posible a la bandeja real de alimentación de la columna. Se puede ver que una alimentación muy mal situada (que requiera que se permanezca con una línea de operación hasta que se acerque mucho a la curva de equilibrio) puede ser un gran desperdicio, en lo que concierne a la eficiencia de las etapas. (Perry, 1997)

2.2.8.5. Etapas mínimas.

En la **Figura Nº 11a).** se muestra una columna que funciona a reflujo total. Se ha cargado una cantidad suficiente de material en la columna para llenar el rehervidor, las bandejas y el acumulador de condensado superior hasta sus niveles de trabajo. A continuación se hace funcionar la columna sin alimentación y toda la corriente del domo es condensada de regreso como reflujo ($L_{N+1} = V_N$ y D = 0). Asimismo, Todo el líquido que llega al rehervidor se vaporiza y regresa a la columna como vapor. Puesto que F, B y D son cero $L_{N+1} = V_N$ en todos los puntos de la columna. Con una pendiente igual que la unidad L/V = 1.0, la línea de operación debe coincidir con la diagonal a través de la columna. La operación de reflujo total da el número mínimo de etapas que se requieren para efectuar una separación específica entre x_B y x_D .**(Perry, 1997)**

2.2.8.6. Reflujo mínimo.

La razón de reflujo mínimo se define como la razón que, si se disminuye una cantidad infinitesimal, necesitaría un número infinito de etapas para lograr una separación específica entre dos componentes, El concepto tiene sentido si se especifica una separación entre dos componentes y no se da el número de etapas. En la **Figura Nº 11b).** se ilustra la condición de reflujo mínimo. Conforme

se reduce la razón de reflujo, las dos líneas de operación oscilan hacia arriba, pivoteando en torno a los valores especificados de x_B y x_D , hasta que uno de ellos o los dos toquen la curva de equilibrio. Para curvas de equilibrio con la forma de que se muestra, el contacto se produce en la línea q de alimentación. Con frecuencia, una curva de equilibrio descenderá más cerca de la diagonal a concentraciones más altas. En esos casos, la línea de operación superior puede hacer contacto antes de que su punto de intersección sobre la línea q llegue a la curva de equilibrio. Siempre que aparece el contacto, la intersección de la línea de operación que contiene un número muy grande de etapas y se forma una zona de composición constante. (Perry, 1997)

Figura Nº 11. Diagrama de McCabe Thiele para casos limitativos. (a) Etapas mínimas para una columna operando a reflujo total sin alimentaciones o productos. (b) Reflujo mínimo para un sistema binario de volatilidad normal.

2.2.8.7. Razón óptima de flujo. En la **Figura Nº 12** se muestra el efecto general de la razón de reflujo operacional sobre los costos fijos, los costos operaciones y la suma de ellos. En situaciones ordinarias el mínimo de la curva de costos totales caerá generalmente en una razón de reflujo operacional de aproximadamente 1.1 a 1.5 veces el valor mínimo $R = L_{N+1}/D$, con el valor más

bajo correspondiente a un valor de la volatilidad relativa cercana a 1.

Figura Nº 12. Ubicación del reflujo óptimo para una alimentación dada y una separación específica

2.2.8.8. Eficiencia de las etapas. El empleo de la eficiencia de plato de Murphee es particularmente conveniente en diagramas x - y. La eficiencia de Murphee se define para la fase de vapor como sigue:

$$\eta = (y_n - y_{n-1})/(y_n^{\circ} - y_{n-1})$$
 Ecuación Nº 18.

donde y_n° es la composición de vapor que estaría en equilibrio con el líquido con el líquido que sale de la etapa *n* y es el valor leído de la curva de equilibrio. y_{n-1} y y_n son los valores reales (no de equilibrio) para las corrientes de vapor que salen de las etapas n-1 y n, respectivamente. Obsérvese que los valores de y_{n-1} y y_n presuponen que las corrientes de vapor están completamente mezcladas y son de composición uniforme. Se puede definir una eficiencia análoga para la fase líquida.

En la **Figura Nº 13** se ilustra la aplicación de una eficiencia de Murphee en fase vapor en un diagrama x - y. Se traza una curva de "seudoequilibrio" a mitad

de camino (sobre una línea vertical) entre las líneas de operación y la curva de equilibrio verdadero. Esta última curva se utiliza para la primera etapa (se supone que el rehervidor parcial es una etapa de equilibrio); pero para todas las demás etapas se supone que el vapor que sale de cada etapa se acerca al valor de equilibrio y_n° sólo un 50% de la distancia. En consecuencia, las etapas de la **Figura Nº 13** representan bandejas reales.

Figura Nº 13. Aplicación de una eficiencia de Murphree de 50% en fase de vapor a cada etapa de la columna (excluyendo el rehervidor). Cada etapa del diagrama corresponde a una etapa real.

La aplicación de una eficiencia constante a cada etapa, como se hace en al **Figura Nº 13** no dará, en general, el mismo resultado obtenido cuando se divide el número de etapas de equilibrio (obtenidas al utilizar la curva de equilibrio real) por el mismo factor de eficiencia. **(Perry, 1997)**.

2.2.8.9. Procedimiento de cálculo aproximado para mezclas binarias. Un método habitual pero útil para una mezcla binaria consiste en utilizar un análisis basado en el método gráfico de McCabe Thiele. Además de las suposiciones habituales de columna adiabática y sobreflujo equimolar en las bandejas o platos, el siguiente procedimiento presupone una retención despreciable del líquido en las

bandejas en la columna y en el condensador.

Como primera etapa de cálculo se debe determinar la relación mínima de reflujo. En la **Figura Nº 14**, el punto *D* que representa el destilado, se encuentra sobre la diagonal, puesto que, se supone, hay un condensador total y $x_D = y_D$; el punto *F* representa la condición de alimentación (x_{pi}, y_{pi}) . El reflujo interno mínimo se representa mediante la pendiente de la línea *DF*.

Figura Nº 14. Determinación de reflujo mínimo para una curva normal de equilibrio

$$(L/V)_{\min} = (y_D - y_{pi})/(x_D - x_{pi})$$
 Ecuación Nº 19.

donde *L* es el flujo del líquido y *V* es el flujo de vapor, los dos valores en moles por hora. Puesto que, V = L + D (donde *D* es el flujo de destilado) y la relación de reflujo externo *R* se define como R = L/D, se tiene:

$$L/V = R/(R+1)$$
 Ecuación Nº 20.

o bien,

$$R\min = \frac{(L/V)\min}{1 - (L/V)\min}$$
 Ecuación Nº 21.

2.2.9. Tipos de Platos.

Las columnas de platos que se utilizan para el contacto líquido-gas se pueden clasificar según el tipo de flujo en sus dispositivos internos de contacto:

- 1. Platos de flujo cruzado.
- 2. Platos de flujo a contracorriente.

El plato de flujo cruzado (**Figura Nº 15a**) utiliza un ducto descendente para líquidos y se emplea más que el plato a contracorriente (**Figura Nº 15b**) debido a ventajas de eficiencias de transferencia y al intervalo operacional que es más amplio. El patrón de flujo de líquido en un plato de flujo cruzado se puede controlar mediante la instalación de ductos descendentes para alcanzar la estabilidad que se desea y una buena eficiencia de transferencia. En la **Figura Nº 16.** se muestran configuraciones de flujos que se usan comúnmente. En la **Tabla Nº 3** se da una guía para la selección provisional de patrones de flujo.

Figura Nº 15. a) Plato de flujo cruzado (vista lateral). b) Plato a contracorriente (vista lateral).

Figura Nº 16. Patrones comunes de flujo de líquido, platos de flujo cruzado.

Se debe observar que la fracción de área transversal de la columna disponible para los dispersadores de gas (orificios o cachuchas de burbujeo) disminuye cuando se utiliza más de un ducto descendente. Así, el diseño óptimo del plato incluye un equilibrio entre el acomodo del flujo de líquido y el empleo eficiente de la sección transversal para el flujo del gas.

Estimated	Range of liquid capacity, gal/min					
tower diam., ft	Reverse flow	Cross- flow	Double pass	Cascade double pass		
3	0-30 0-40	30-200 40-300	100 700			
8 10	0-50 0-50 0-50	50-400 50-500 50-500	400-700 500-800 500-900	900-1400		
12 15 20	0-50 0-50 0-50	50–500 50–500 50–500	500-1000 500-1100 500-1100	1000–1600 1100–1800 1100–2000		

Tabla Nº 3. Selección del patrón de flujo en plato de flujo cruzado.

La mayor parte de los nuevos diseños de platos de flujo cruzado utilizan perforaciones para dispersar el gas en el líquido sobre los platos. Esas perforaciones pueden ser orificios redondos simples o contener "válvulas" móviles con orificios variables sin forma circular. Estos platos perforados se denominan platos de malla (Figura Nº 17) o platos de válvulas (Figura Nº 18). Para los platos de malla, se evita que el líquido fluya por las perforaciones por la acción de circulación del gas; de ese modo cuando el flujo de gas es bajo, es posible que parte del líquido o todo se drene por las perforaciones y, en efecto, por las partes de desviación (*by-pass*) de la zona de contacto. El plato de válvula se diseña para minimizar este drenaje o "purga", puesto que la válvula tiende a cerrarse cuando baja el flujo de gas, de modo que el área total varía para mantener un balance dinámico de presión en el plato.

Figura Nº 17. Dispersores de plato perforado.

Figura Nº 18. Dispersores de plato de válvula.

2.2.9.1. Eficiencia del plato. La eficiencia de un plato para la transferencia de masa depende de tres conjuntos de parámetros de diseño:

- 1. El sistema: composición y propiedades.
- 2. Condiciones de flujo: Velocidad de paso.
- 3. Geometría: tipo y dimensiones del plato.

El diseñador tiene poco control sobre el primer conjunto, pero se puede encargar eficientemente de los otros dos. Lo que le interesará, a fin de cuentas, es la eficiencia general de la columna:

$$E_{oc} = N_t / N_a$$
 Ecuación Nº 22.

o la razón de platos teóricos a platos reales, que se requiera para efectuar la separación. Al llegar a un vapor de E_{oc} para el diseño, puede basarse en datos de pruebas en plantas o en análisis de mediciones de eficiencia de plantas piloto. Si no se dispone de esa información directa, se debe recurrir a los métodos de predicción. Los métodos para predecir la eficiencia de los platos son de tres tipos generales.

- 1. Métodos empíricos.
- 2. Escalamiento directo a partir de los resultados del laboratorio.
- 3. Métodos teóricos o semiteóricos de transferencia de masa.

El primero de estos tres da E_{oc} directamente. El segundo da un punto de eficiencia y el tercero implica la predicción de eficiencias de fase individuales.

Para el primer método la ecuación general para la destilación de mezclas binarias es:

$$E_{oc} = \frac{1}{1 + 3.7(10)^4 \frac{KM}{h'\rho_t T}}$$
 Ecuación Nº 23.

donde:

 E_{oc} = Eficiencia total de la columna, en porcentaje

 $K = \text{Relación de equilibrio vapor líquido, } y^{o}/x$ (Adm.)

y^o = Concentración de la fase líquida en equilibrio, fracción mol

x = Concentración de la fase líquida, fracción mol

M = Peso molecular (Kg/Kgmol)

- h' = Profundidad eficaz del líquido
- ρ_t = Densidad del líquido, Kg/m³
- T = Temperatura, K

Para el segundo debe considerarse lo siguiente:

- o Los sistemas destilados deben ser los mismos.
- Deben comparase con el mismo método respecto al punto de inundación.
- Debe operar a reflujo total.
- Debe utilizar un dispositivo estándar (una pequeña columna de platos perforados con vertederos) en la prueba de laboratorio.

Y su ecuación de trabajo conlleva a eficiencias puntuales, las cuales se pueden determinar por:

$$E_{og} = \left(\frac{y_n - y_{n-1}}{y_n^0 - y_{n-1}}\right)_{punto}$$
 Ecuación Nº 24.

en donde y_n^0 es la concentración del gas en equilibrio con la concentración del líquido en el punto. (**Perry, 1997**)

2.2.10. Número de Platos y Localización del Plato de Alimentación

Para la resolución del problema de diseño (es decir, del cálculo del número de platos) se procede según lo indicado en las **Figuras 19** a la **25**:

Figura Nº 19. Se dibuja en el diagrama de McCabe Thiele la recta (línea morada) característica de la alimentación o recta q y las rectas operativas de enriquecimiento, agotamiento y alimentación.

Figura Nº 20. Para una columna convencional con condensador total, se parte de $X_{1,0} = X_D$ y se aplica la ecuación de la recta operativa de enriquecimiento para calcular $y_{1,1}$.(línea punteada oscura) se obtiene que $X_{1,0} = X_D = y_{1,1}$.

Figura Nº 21. Para el valor obtenido de $y_{1,1}$ se calcula la composición $X_{1,1}$ en equilibrio. Es decir, se traza la horizontal (línea roja) hasta cortar la curva de equilibrio (curva verde).

Figura Nº 22. De $X_{1,1}$ se calcula el valor de con la recta de enriquecimiento. Es decir se traza la vertical hasta la recta operativa (línea azul) y el punto de corte indica la composición del vapor $y_{1,2}$.

Figura Nº 23 Se alterna el cálculo de $X_{1,i}$ (con el equilibrio, trazando la horizontal) y de $y_{1,i+1}$ (con la operativa, trazando la vertical) hasta que se obtenga un plato con $X_{1,i} < X_{OPTIMA_{f}}$ es decir, hasta rebasar el punto (1).

Figura Nº 24. Una vez rebasado el punto (1) hay que emplear una vez la recta operativa de alimentación para calcular la composición del líquido que sale del plato de alimentación.

Figura Nº 25. Por último, se procede igual que en el sector de enriquecimiento, partiendo de $X_{2,1}$ y utilizando la recta operativa de agotamiento hasta alcanzar $X_{2,i} < X_R$. Es decir las verticales se trazan hasta la operativa de agotamiento (línea amarilla) hasta que se rebase X_R .

El número de segmentos horizontales que se obtienen en el diagrama de McCabe equivale al número de etapas ideales. El número de etapas ideales calculado utilizando el diagrama de McCabe-Thiele representa el número de platos teóricos de la columna, teniendo en cuenta que:

- Si el condensador es parcial, corresponde a una etapa ideal y viene representado por la primera etapa de la columna.
- Si el condensador es total, no equivale a una etapa ideal y no está contabilizado dentro del número de etapas calculado mediante el método de McCabe-Thiele.
- Si la caldera es parcial, corresponde a una etapa ideal y viene representada por la última etapa de la columna.
- Si la caldera es total, no equivale a una etapa ideal y no está contabilizada dentro del número de etapas calculado mediante el método de McCabe-Thiele.

Como se puede observar en el diagrama de McCabe-Thiele, en el último plato teórico se obtiene una composición de líquido menor a la deseada, x_R . Para conseguir una x_R exactamente igual a la especificada únicamente bastaría con sólo una fracción de dicho plato.

2.2.10.1. Criterios para Determinar el Plato de Alimentación

Para determinar la posición óptima del plato de alimentación se va comparando la composición del líquido que sale de cada plato con una x_{OP} , que determina el cambio de sector, de acuerdo con el siguiente criterio:

$$X_{1,1} \le X_{OP} \le X_{2,NPk}$$
 Ecuación Nº 25.
Es decir, se considera la alimentación A_k se debe introducir en el plato en el que se obtiene el primer líquido de composición menor o igual que x_{OPk} . Hay que recordar que el líquido se empobrece en el componente más volátil a medida que desciende por la columna de rectificación, por lo que las composiciones del líquido son menores al bajar en la columna.

Para determinar x_{OPk} se considera que el piso de alimentación, idealmente, sería aquel cuyas composiciones coinciden con las composiciones del vapor y el líquido en equilibrio con el alimento. Por tanto, x_{OP} se obtiene realizando un balance de materia alrededor del sector de enriquecimiento y considerando que el vapor que entra en dicho sector tiene exactamente la misma composición que el vapor en equilibrio con el alimento (V_A):

$$X_{OP} = \frac{y_A (L_{1,0} + D) - D_{X_d}}{L_{1,0}}$$
 Ecuación Nº 26.

En el diagrama de McCabe-Thiele anterior, x_{OP} equivale al punto de corte de la recta operativa de enriquecimiento con la operativa de alimentación. Se puede comprobar sustituyendo y_A en la ecuación de la recta operativa de enriquecimiento y despejando el valor de **x**. (Perry, 1997)

2.2.10.2. Línea de operación y Fracción Vaporizada

En el esquema (**Figura 26**) que se muestra, F es la mezcla que se desea separar, formada por dos compuesto A y B. *Xf* es la fracción molar del compuesto más volátil de la mezcla (esta es una convención). V y L son las fases vapor y liquido. X y Y son las composiciones del compuesto más volátil en cada fase. Se considera que estas composiciones están en equilibrio.

Figura Nº 26. Esquema de un proceso de destilación para la deducción de los balances de materia y de componente.

De acuerdo con lo anterior y considerando un estado estacionario, el balance de masa general es:

$$F = V + L$$
 Ecuación Nº 27.

y el balance del componente más volátil será:

$$Fx_F = Vy + Lx$$
 Ecuación N^o 28.

Se define la fracción vaporizada de la alimentación f = V/F de forma que el balance de masa general se puede escribir así:

$$1 = f + \frac{L}{F}$$
 Ecuación Nº 29.
$$\frac{L}{F} = 1 - f$$
 Ecuación Nº 30.

y entonces el balance de componente da:

$$F = fy + (1 - f)x$$
 Ecuación Nº 31.

$$y = -\frac{1-f}{f}x + \frac{x_F}{f}$$
 Ecuación Nº 32.

Esta es la ecuación de una línea recta (línea de operación), trazada en una gráfica de equilibrio del sistema (X vs. Y). Para trazar esta línea basta con conocer la fracción vaporizada (para tener la pendiente) y la composición de la alimentación (para conocer el intercepto).

2.2.11. Tipos de Condensadores.

2.2.11.1. Condensador total. En un condensador total toda la corriente de vapor que abandona la cabeza de la columna se condensa y, posteriormente, se separa en el destilado líquido y el reflujo, que se devuelve a la columna.

Figura Nº 27. Tipos de condensadores. a) Condensador total. b) Condensador parcial.

Sin embargo, en ocasiones, la presión necesaria para condensar toda la corriente de vapor que abandona la cabeza de la columna puede resultar excesiva y se opta por un **condensador parcial**.

Figura Nº 28. Condensador parcial. Deducción de la recta operativa de enriquecimiento.

2.2.11.2. Condensador parcial.

Si se utiliza un condensador parcial, el evaporador sólo se condensa parcialmente. Entonces el vapor y el líquido que salen del condensador están en equilibrio, y el condensador opera como otra etapa de la columna. En este caso el destilado y el reflujo están en equilibrio.

Para dibujar la recta operativa de enriquecimiento en el caso de que haya condensador parcial, se procede igual que en el caso de condensador total: a partir del punto de corte con la diagonal y la pendiente o la ordenada en el origen.

A efectos gráficos es la misma recta operativa que para condensador total, porque tienen la misma pendiente y el mismo punto de corte con la diagonal. Sin embargo, ahora la primera etapa de equilibrio que se calcula corresponde al condensador total.

2.2.12. Tipos de Calderín

2.2.12.1. Calderín parcial.

Una calderín parcial es aquel en la que entra una corriente de líquido procedente del último plato de la columna, se vaporiza parcialmente, el líquido que resulta se extrae como producto de cola, \mathbf{R} , y el vapor resultante se alimenta al último piso de la columna; dicho vapor y \mathbf{R} se encuentran en equilibrio.

Si la columna está equipada con una caldera parcial, entonces dicha caldera equivale a una etapa ideal.

Figura Nº 29. Tipos de calderin. a) Calderín Parcial. b) Calderín Total.

2.2.12.2. Calderín total.

Una calderín total es aquel en que la corriente de líquido procedente del último plato de la columna se divide en dos corrientes, una corriente producto de cola, **R**, y la corriente de alimentación de la caldera, donde se vaporiza totalmente, y se lleva al último piso de la columna. Todas estas corrientes tienen la misma composición.

Una caldera total no equivale a una etapa ideal. Es decir, en el gráfico de McCabe-Thiele de una columna de rectificación equipada con una caldera total, la última etapa que se calcula corresponde al último plato en la columna y no a la caldera.

CAPÍTULO III

CAPÍTULO III MARCO METODOLÓGICO

En este capítulo se describe la estrategia que se siguió para alcanzar el objetivo general de este Trabajo Especial de Grado.

3.1.- VERIFICACIÓN DE LAS CONDICIONES DE LOS EQUIPOS Y LOS REQUERIMIENTOS BÁSICOS PARA EL MONTAJE DE LAS TORRES DE DESTILACIÓN.

Para proceder a la instalación de la torre de relleno, fue necesario verificar cada uno de los accesorios y equipos, para ello se procedió de la siguiente manera:

- Se realizó un chequeo general de todas las instalaciones del laboratorio con la finalidad de ubicar las toma de agua y de energía empleadas en el montaje de la torre.
- Además de los requerimientos básicos, se ubicó, el espacio físico para llevar a cabo el montaje, encontrándose como el más apropiado el indicado en la figura Nº H10 del apéndice H, donde se muestra la vista de planta del laboratorio.
- Se realizó un inventario de todos los accesorios y equipos disponibles para el montaje de la torre, los cuales fueron:

Para la torre de relleno:

- ✓ Un balón de tres bocas
- ✓ Dos condensadores
- ✓ Una llave de tres vías
- ✓ Una columna para relleno

- ✓ Pinzas tres dedos
- ✓ Pinzas de Nuez
- ✓ Mangueras
- Dos cabezales de destilación
- ✓ Tuberías de vidrio en forma de T con válvula lateral
- ✓ Tuberías de vidrio en forma de L con válvula lateral
- ✓ Tuberías de vidrio en forma de H
- ✓ Válvula de tres vías
- ✓ Recolector de condensado con tres válvulas
- ✓ Aro metálico
- o La s piezas adquiridas posteriormente fueron:
 - ✓ Rotámetro
 - ✓ Relleno
 - ✓ Manta
 - ✓ Rejilla
 - ✓ Embudo de decantación

Para la torre de platos:

- 1. Cuatro secciones de separación de vidrio
- 2. Un cabezal de retorno con punto para indicador de temperatura.
- 3. Cabezal de destilación
- 4. Condensador
- 5. Mangueras
- o Se adquirieron posteriormente
 - 6. Calderín
 - 7. Seis platos de teflón y uno de acero inoxidable
 - 8. Seis abrazaderas de aluminio
 - 9. Conexiones de plástico

10. Un termostato y un termo-pozo11. Switch ON/OFF

12. Un contactor

13. Una resistencia de inmersión.

3.2.- DISEÑO DE LOS PLATOS Y EL CALDERÍN DE LA TORRE DE RECTIFICACIÓN.

Se diseñaron seis platos en teflón con un diámetro de 12 cm con una disposición de 60 orificios en forma aleatoria con diámetro interno de 2 mm y uno de 6 mm en un lateral del plato para el bajante. Estos platos tienen un espesor de 5 mm.

Para la instalación de la torre de rectificación se diseñó, como modelo para futuros ensayos, un plato en acero inoxidable con un diámetro de 12 cm con una disposición de 60 orificios en arreglo cuadrado separados por una distancia de 8 mm con diámetro interno del orificio de 2 mm y uno de 6 mm en un lateral del plato para el bajante. El espesor fue de 3 mm.

También se adquirió un calderín en acero inoxidable con capacidad de 15 L con salidas para el indicador de nivel, toma de muestra, carga y descarga de la mezcla y punto para la toma de la temperatura (termómetro bimetálico) y la salida en la parte superior hacia los platos (figura Nº H7e del apéndice H).

3.3.- SELECCIÓN DEL TIPO DE EMPAQUE Y DE LA MANTA DE CALENTAMIENTO PARA LA TORRE DE DESTILACIÓN DE RELLENO.

El tipo de empaque seleccionado de acuerdo a las características de la torre, fue el siguiente:

- o Material: Vidrio PYREX.
- Tipo de empaque: Anillos.
- o Diámetro: 3 mm
- o Distribución: Al azar.
- o Altura del relleno: 73 cm.

En cuanto a la manta de calentamiento:

- Volumen de muestra a tratar: 1 L de capacidad en el balón.
- Rango de Temperatura de operación: máx. 150º C

3.4.- INSTALACIÓN DE LAS TORRES.

Debido a que esta fase fue una de las más importantes, este proceso se llevó con total rigurosidad y se realizaron las siguientes actividades:

Para la torre de relleno:

- Se elaboró un diagrama de flujo de tuberías e instrumentación en la que se determinó la mejor secuencia de montaje de las partes.
- Una vez adquiridas e inventariadas todas las piezas y con apoyo del diagrama se procedió al montaje de la torre de relleno. La manta de calentamiento se ubicó sobre una base de madera y cada una de las piezas de la torre se fueron sujetando con pinzas de nuez y pinzas de tres dedos a una rejilla previamente adquirida e instalada en la pared (perpendicular a la base de madera) siguiendo un orden específico de abajo hacia arriba y de izquierda a derecha. La secuencia para la instalación fue, (véanse figura Nº H2 y H3 del apéndice H.

- 1. Manta de Calentamiento
- 2. Cabezal con toma de muestra
- 3. Columna / relleno
- 4. Cabezal de destilación
- 5. Matraz para recolección del condensado
- 6. Condensador de Bola
- 7. Tubería de vidrio en forma de H
- 8. Condensador recto
- 9. T vidrio
- 10. Tubo en L con válvula de paso
- 11. T de vidrio con válvula lateral
- 12. T de vidrio con depósito en el centro
- 13. Válvula de tres vías
- 14. Rotámetro
- 15. Recolector del condensado con tres válvulas
- 16. Embudo de decantación (sujeto con un aro metálico)
- Las partes que requerían conexiones para el flujo del fluido se llevó a cabo con mangueras de 5 mm de diámetro y en el caso particular del rotámetro se realizó una reducción con mangueras de otros diámetros para llevarlo a 5 mm.
- Posteriormente se realizaron las conexiones de los condensadores a la toma de agua y se colocaron los accesorios movibles de la torre:
 - 17. Termómetros
 - 18. Regulador de voltaje
 - 19. Jeringas (para la toma de muestras)
- Se verificaron las conexiones y los empalmes para descartar fugas en el sistema.

Para la torre de platos:

- Se elaboró un diagrama de flujo de tuberías e instrumentación en la que se determinó la mejor secuencia de montaje de las partes.
- Una vez adquiridas e inventariadas todas las piezas y con apoyo del diagrama se procedió al montaje de la torre de platos. El calderín se fijó al piso y cada una de las piezas de la torre se fueron ensamblando con abrazaderas y gomas siguiendo un orden específico de abajo hacia arriba y de derecha a izquierda. La secuencia para la instalación fue, (véase figura Nº H8 del apéndice H :
 - 1. Calderín
 - 2. Plato 1
 - 3. Primera sección de vidrio
 - 4. Plato 2
 - 5. Segunda sección de vidrio
 - 6. Plato 3
 - 7. Tercera sección de vidrio
 - 8. Plato 4
 - 9. Cuarta sección de vidrio
 - 10. Plato 5
 - 11. Quinta sección de vidrio
 - 12. Plato 6
 - 13. Un cabezal de retorno con punto para indicador de temperatura.
 - 14. Cabezal de destilación
 - 15. Condensador
 - 16. Mangueras
- Las partes que requerían conexiones para el flujo del fluido se llevó a cabo con mangueras de 10 mm de diámetro incluyendo la conexión al rotámetro.

 Posteriormente se realizaron las conexiones de los condensadores a la toma de agua y se colocaron los accesorios movibles de la torre:

17. Termómetros

18. Jeringas (para la toma de muestras)

 Se verificaron las conexiones y los empalmes para descartar fugas en el sistema.

3.5.- CONDICIONES DE OPERACIÓN DE LAS TORRES PARA SU PUESTA EN MARCHA UTILIZANDO LAS MEZCLAS AGUA-ETANOL Y AGUA-ISOPROPANOL.

3.5.1.- Puesta en marcha.

Torre de relleno:

Una vez instalada la torre de relleno se procedió a evaluar su operatividad y funcionamiento y verificar que cada una de las piezas estuviese conectada en forma correcta.

✓ Corrida con agua:

Inicialmente la corrida se realizó con agua pura comenzando el calentamiento con el potenciómetro en 6 subiendo de manera gradual hasta 9.

Durante la corrida se pudo verificar que:

- 1. El equipo no presentó fugas durante la experiencia.
- 2. Se trabajó con un volumen inicial de agua de 500 ml.
- El tiempo de calentamiento para que el agua llegara a ebullición fue de 35 min. Aproximadamente.
- 4. La temperatura de ebullición fue de 98º C.
- 5. La temperatura en el tope de la columna fue de 97º C.

✓ Corrida con mezclas de etanol-agua:

Se realizaron 6 corridas con mezclas de etanol-agua, donde se variaron y ajustaron los siguientes parámetros:

- 1. Concentraciones diferentes de la alimentación.
- 2. Relaciones de reflujo diferentes.
- 3. Muestras de distintos aguardientes.

Y se comprobó que:

- 4. El equipo no presentó fugas durante la experiencia.
- 5. El tiempo de calentamiento estimado para que la mezcla llegara a ebullición era de 24 a 28 min aproximadamente, con posición en el potenciómetro en 7.
- 6. La temperatura de ebullición fue de 80º C.
- 7. La temperatura en el tope de la columna fue de 77º C.

✓ Corrida con mezclas de isopropanol-agua:

De igual manera se realizaron 6 corridas con mezclas de isopropanol-agua,

donde se variaron y ajustaron los siguientes parámetros:

- 1. Concentraciones diferentes de la alimentación.
- 2. Relaciones de reflujo diferentes.
- 3. Muestras de alcohol comercial como:

Alcohol Isopropílico farmacéutico

Y se comprobó que:

- 4. El equipo no presentó fugas durante la experiencia.
- 5. El tiempo de calentamiento estimado para que la mezcla llegara a ebullición era de 26 a 30 min aproximadamente, con posición en el

potenciómetro en 7.

- 6. La temperatura de ebullición fue de 82º C.
- 7. La temperatura en el tope de la columna fue de 79º C.

Torre de platos:

Una vez instalada la torre de platos se procedió a evaluar su operatividad y funcionamiento y verificar que cada una de las piezas estuviese conectada en forma correcta.

✓ Corrida con agua:

Inicialmente la corrida se realizó el calentamiento con agua pura.

Durante la corrida se pudo verificar que:

- 1. El equipo presentó fugas que fueron corregidas durante la experiencia.
- 2. Se trabajó con un volumen inicial de agua de 10.000 ml.
- El tiempo de calentamiento para que el agua llegara a ebullición fue de 28 min. Aproximadamente.
- 4. La temperatura de ebullición fue de 99º C.
- 5. La temperatura en el tope de la columna fue de 100° C.

✓ Corrida con mezclas de etanol-agua:

Se realizaron 5 corridas con mezclas de etanol-agua, donde se variaron y ajustaron los siguientes parámetros:

1. Concentraciones diferentes de la alimentación.

2. Relaciones de reflujo diferentes.

Y se comprobó que:

- 3. El equipo no presentó fugas durante la experiencia.
- 4. El tiempo de calentamiento estimado para que la mezcla llegara a ebullición era de 20 a 25 min aproximadamente.
- 5. La temperatura de ebullición fue de 82º C.
- 6. La temperatura en el tope de la columna fue de 79º C.

✓ Corrida con mezclas de isopropanol-agua:

De igual manera se realizaron 5 corridas con mezclas de isopropanol-agua, donde se variaron y ajustaron los siguientes parámetros:

- 1. Concentraciones diferentes.
- 2. Relaciones de reflujo diferentes.
- 3. Muestras de alcohol Isopropílico diluido.

Y se comprobó que:

- 4. El equipo no presentó fugas durante la experiencia.
- 5. El tiempo de calentamiento estimado para que la mezcla llegara a ebullición era de 20 a 25 min aproximadamente.
- 6. La temperatura de ebullición fue de 83º C.
- 7. La temperatura en el tope de la columna fue de 80° C.

3.5.2.- Desarrollo de los modelos matemáticos ajustados la evaluación las torres (Relleno y de Platos).

Torre de Relleno.

 Para determinar el rendimiento del proceso de destilación se procedió de la siguiente manera:

- Con los diferentes Índices de refracción obtenidos como datos experimentales a lo largo del proceso de destilación, se obtuvieron las respectivas composiciones molares utilizando la curva de calibración etanol-agua o Isopropanol-agua, según sea el sistema empleado. Esto con el fin de aplicar la ecuación de Lord Rayleigh. (Ver figuras Nº B2 Y B3 en apéndice B).
- ✓ Seguidamente con estas composiciones molares, del calderín, y con apoyo del diagrama *x*−*y* etanol agua se obtiene la composición *y** (Fracción mol en equilibrio con el líquido).
- ✓ Una vez conseguidas las composiciones x y y* se procedió a la construcción de la curva 1/(y*-x) vs. x. para determinar el área bajo la curva. Para mayor facilidad el área puede determinarse empleando el programa Maple 7.0 ® u otro programa equivalente o en forma manual.
- ✓ Conocida el área se utilizó la fórmula de Lord Rayleigh para determinar los moles de líquido residual (w) de composición x_w como se muestra en el modelo de cálculo (ver **apéndice A**).
- Con la relación de moles del líquido residual tanto experimental como teórico se obtiene el rendimiento.
- Para la fracción vaporizada se utilizó los moles del destilado como dato experimental.
- Con la ayuda del balance global, los moles residuales y la alimentación se obtuvieron los teóricos para luego relacionarlos y determinar la eficiencia. (véase el cálculo típico en el **apéndice A**).

Torre de platos.

- Para determinar el rendimiento del proceso de destilación para la torre de platos se procedió de la siguiente manera:
 - Con los diferentes Índices de refracción obtenidos como datos experimentales a lo largo del proceso de destilación, se obtuvieron las respectivas composiciones molares utilizando la curva de calibración etanol-agua o Isopropanol-agua. (Ver figuras Nº B2 y B3 en el apéndice B respectivamente).
 - ✓ Seguidamente con la composición molar del destilado y la relación de reflujo se construyó la línea de operación en el diagrama *x* − *y* de los sistemas respectivos (Fracción mol en equilibrio con el líquido).
 - Una vez conseguidas la línea de operación se procedió a la construcción de los platos teóricos aplicando el método gráfico McCabe Thiele.
 - Conocido el número de platos experimentales y los teóricos (6 platos teóricos) se determinó la eficiencia de la torre.
 - Con la relación de moles del destilado se evaluó la eficiencia, para su comparación, por el método de la fracción vaporizada.
- Para la fracción vaporizada se recurrió a moles del destilado como dato experimental.
- Con la ayuda del balance global, los moles residuales y la alimentación se obtuvieron los teóricos para luego relacionarlos y determinar la eficiencia. (véase el cálculo típico en el **apéndice A**)

3.5.3.- Diseño de tablas y elaboración de gráficos (Evaluación del proceso de destilación).

Una vez llevada a cabo las corridas se tomaron los datos que se requirieron para determinar la eficiencia de la torre y evaluar su operatividad haciendo uso de los modelos matemáticos ya mencionados. Para proseguir con los objetivos, se diseñaron tablas o elaboraron gráficos que permitieron discutir y analizar los resultados.

- Las tablas de datos diseñadas consideran las siguientes variables:
 - Composición y volumen inicial de la mezcla.
 - Composición y volumen final de la mezcla.
 - Composición y volumen del destilado.
 - Temperaturas en el calderín y en el tope.
 - Índice de refracción en el calderín, en el tope y en el fondo.
 - Caudales en el reflujo y en el destilado.
 - Relación de reflujo.
- Los principales diagramas utilizados fueron:
 - Diagrama x y (mezcla binaria).
 - Índice de Refracción vs. Composición.
 - 1/(y* x) vs x (Para resolver la ecuación de Rayleigh).
 - Abertura del Rotámetro vs Caudal (Calibración del Rotámetro).

Con la recopilación de todos estos datos se procedió a su evaluación, los cuales permitieron hacer cambios operativos, para ajustar las condiciones de las torres y finalmente, generar conclusiones y recomendaciones de uso.

Para las tablas de los resultados se tomó en consideración:

- La relación de reflujo.
- Composición de la alimentación, residuo y destilado.
- Fracción vaporizada teórica y experimental.
- Rendimiento.
- Eficiencia.

3.6- Generar un manual de operación de las torres.

Se elaboró un manual de operación de las torres de destilación donde se indica paso por paso el procedimiento para llevar a cabo las fases de arranque, operación y parada de los equipos, consideraciones de operación y normas de seguridad. De esta manera, se contará con un manuscrito que será de gran importancia para docentes, técnicos y estudiantes (Ver **Apéndice G**).

CAPÍTULO IV

CAPÍTULO IV

DISCUSIÓN Y RESULTADOS

4.1. Torre de Relleno

4.1.1. Mezcla: Etanol-Agua

En la **tabla Nº 4** se presentan los valores de la eficiencia con su respectiva relación de reflujo, obtenidos de la evaluación de la columna de relleno con el sistema etanol-agua, observándose un valor relativamente constante en las corridas 1, 2 y 6, lo cual implica una eficiencia máxima de 55,39 %. La tabla se ha ordenado según el valor de la relación de reflujo (de menor a mayor), aunque las experiencias prácticas no se llevaron a cabo en este mismo orden, lo que conlleva a que las diferentes corridas que se realizaron inicialmente arrojaron valores de eficiencia relativamente bajos, debido a que el equipo presentaba fuga en una de las conexiones ubicada en la parte superior de la torre, trayendo como consecuencia la eficiencia más baja (31,61%).

Aunado a esto se presentó borboteo brusco en el calderín y pérdida de pequeñas porciones de la mezcla de alimentación al momento de tomar muestras para determinar las composiciones de la misma, todas estas circunstancias contribuyeron a eficiencias entre 30 y 40 %.

Una vez corregidos estos factores se pudo apreciar en las dos corridas siguientes (R=1/1 y R=3/1) un aumento de la eficiencia, las cuales fueron de 37,67 % y de 44,58 % respectivamente. Es necesario acotar que las mangueras y conexiones tienen una longitud determinada donde se acumula cierta cantidad de fluido que no se cuantifica en el destilado y por ende repercute en el resultado obtenido, ya que el cálculo de la eficiencia, se realizó considerando la fracción

vaporizada (f), que no es más que la cantidad molar de destilado en relación a la cantidad molar de alimentación.

Corrido Nº	Relación de	Eficiencia (%)	Rendimiento
Corrida INº	Reflujo (<i>R</i>)		(%)
1	1/9	55,39	98,46
2	2/5	51,84	97,20
3	1/1	37,67	98,16
4	3/2	31,61	99,17
5	3/1	44,58	96,22
6	4/1	50,49	99,71

Tabla Nº 4. Resultados de la evaluación de la columna de relleno a diferentes relaciones de reflujo con el sistema etanol-agua.

Al conseguir la estabilidad del equipo se logró mantener resultados de eficiencia entre 50 y 60% que para fines prácticos docentes y comparados con estudios anteriores en equipos similares, son valores bastante aceptables.

Otro aspecto a considerar es la relación de reflujo (R=L/D) puesto que cuando se trabaja con relaciones pequeñas la línea de operación se ubica fuera de la curva de equilibrio como se muestra en la **Figura Nº 30**. Por consiguiente, si se desea una línea de operación por debajo de la curva de equilibrio habría que trabajar con relaciones de reflujo altas (R= 3/2, 3/1, 4/1). En la **Figura Nº 30** se puede apreciar que estas relaciones se van acercando a la línea x = y a medida que se va aumentando el valor de R, lo que trae como consecuencia operar con un margen muy reducido, en cuanto a la abertura del rotámetro, para fijar este caudal durante la experiencia.

Se pudo observar que la eficiencia oscila entre valores de 31 y 55% independientemente de la relación de reflujo ajustada, aunque teóricamente debía

esperarse que la eficiencia fuera aumentando con la relación de reflujo, sin embargo, no se observó una dependencia marcada entre la variable operativa ajustada (R) y el valor respuesta (eficiencia). Cabe citar este hecho a los problemas citado anteriormente como es el caso de la fuga en una de las conexiones, el borboteo brusco en el calderín que traía como consecuencia la pérdida de pequeñas porciones de la mezcla, además de otros factores como la cantidad de energía suministrada, la temperatura del condensador y la abertura en la salida del condensador de los cuales se hace mención más adelante en la mezcla isopropanol-agua.

Figura Nº 30. Líneas de operación experimentales a las respectivas relaciones de reflujo en el diagrama XY de la mezcla binaria etanol-agua.

De acuerdo a los resultados; el rendimiento que se obtuvo fue alto ya que como valor mínimo resultó un 96,22 % indicado en la corrida Nº 5 de la tabla Nº 4 y el máximo de 99,71 %, corrida Nº 3 de la misma tabla. No obstante hay que considerar que este rendimiento se calculó en función de la relación molar entre la mezcla alimentada y el residuo final en el calderín, aplicándose la ecuación de Lord Rayleigh.

Para la evaluación del rendimiento hay que tomar en cuenta que la mezcla presenta un azeótropo y por ende no se obtuvo un destilado del 100 %, por la que la relación Residuo/Alimentación viene del estudio de los moles de la mezcla final y de la alimentación a sus respectivas composiciones implicando la resolución de la integral (ecuación de Lord Rayleigh) como se muestra en el cálculo típico (véase **Apéndice A**).

4.1.2. Mezcla: Isopropanol-Agua

A diferencia de la mezcla estudiada anteriormente (etanol-agua), las corridas se llevaron en el orden prescrito de la tabla Nº 5, es decir, en orden creciente a la relación de reflujo, controlándose tanto el borboteo como las posibles fugas del equipo.

Se observa que la eficiencia osciló entre un 62,13% y un 68,02% a lo largo de todas las corridas por lo que se puede afirmar que la torre es más eficiente con la mezcla isopropanol-agua que con la mezcla etanol-agua.

Nuevamente, no se observa una tendencia definida entre la variable relación de reflujo y el resultado de eficiencia; pero se puede observar que estos valores de eficiencia son mucho más consecuentes a lo que se espera teóricamente, justificándose este hecho a las mismas razones expuestas en la discusión de la mezcla etanol-agua.

Corrida №	Relación de	Eficiencia (%)	Rendimiento
	Reflujo (R)		(%)
1	1/7	62,79	99,20
2	1/3	62,13	92,48
3	2/5	68,02	97,26
4	2/3	66,71	98,41
5	4/3	62,87	97,66
6	7/2	67,04	98,72

Tabla Nº 5. Resultados de la evaluación de la columna de relleno a diferentes relaciones de reflujo con el sistema isopropanol-agua.

A pesar de que la relación de reflujo no tuvo una influencia marcada sobre la eficiencia, se pudo observar que otros factores desde el punto de vista operativo sí afectaron el proceso. Estas condiciones fueron: cantidad de energía suministrada al sistema, temperatura del agua del condensador y abertura de la salida del condensador en el tope de la columna.

La cantidad de energía suministrada tenía que ser regulada para estabilizar la ebullición de la mezcla y no incurrir nuevamente en el borboteo brusco. Como consecuencia de esta regulación de energía se manejaba un caudal de acuerdo a un máximo en la lectura del rotámetro que de igual manera reducía el margen para controlar la relación de reflujo de modo operativo.

La temperatura del condensador dependía de la temperatura ambiental del agua ya que esta fue tomada directamente del suministro de agua potable de Hidrocentro. Esto origina que la transferencia de calor del vapor sea dependiente de este factor y no ocurre el cambio de fase (condensación) de todo el flujo de vapor generado. Es decir, el intercambiador de calor se comportaría como un condensador parcial y no total, permaneciendo cierta cantidad de vapor que no pasará al estado líquido, perdiéndose este por la parte superior de la torre, ya que el sistema es abierto.

A pesar de los factores operativos indicados anteriormente los resultados obtenidos son bastante confiables ya que presentan un margen de error de un 6 % aproximadamente.

Figura Nº 31. Líneas de operación experimentales a las respectivas relaciones de reflujo en el diagrama XY de la mezcla binaria isopropanol-agua.

Las líneas de operación, a diferencia del otro sistema, se ubican dentro de la curva de equilibrio por lo que este sistema binario proporciona mayor flexibilidad para trabajar con diferentes relaciones de reflujo como se muestra en la **Figura Nº 31**.

Sin embargo, no repercute sobre la eficiencia el fijar estas relaciones de reflujo, ya que estos valores se mantienen relativamente constantes o con un margen de diferencia muy pequeño comparando los resultados de todas las corridas.

El rendimiento de acuerdo a los resultados fueron bastante buenos ya que como valor mínimo resultó un 92,48 % indicado en la corrida Nº 2 de la **tabla Nº 5** y el máxima de 99,20 %, corrida Nº 1 de la misma tabla. También hay que considerar, como se hizo en la mezcla etanol-agua, que este rendimiento va en función de la relación de la mezcla alimentada y el residuo, en donde se recogieron las distintas composiciones, en el calderín, a lo largo de la operación por lo que se aplicó la ecuación de Lord Rayleigh. El cálculo a seguir se muestra en el **apéndice A**.

4.2. Torre de Platos

Para evaluar la eficiencia de platos se recurrió al método gráfico McCabe Thiele y de modo comparativo, en simultáneo, el método de la fracción vaporizada.

4.2.1. Mezcla: Etanol-Agua

Previo al estudio de la eficiencia de la torre de platos con la mezcla etanol – agua es necesario destacar que durante la instalación de la misma se presentaron fugas que fueron corregidas durante la marcha para lograr estabilizar el sistema y obtener resultados acordes a lo esperado.

Como ha de apreciarse en la **Tabla Nº 6** en las dos primeras corridas del método gráfico (McCabe Thiele) no se reportan los valores de eficiencia, debido a que en la construcción del número de platos teóricos sobre la línea de operación de estás corridas se requieren mayor cantidad de los mismos en comparación al

número de platos reales, es decir, que a medida que se hace menor la relación de reflujo se hace mayor el numero de platos necesarios, y por ende, la relación L/D no puede descender por debajo de un valor que es función de la composición del destilado y de las condiciones de alimentación, denominada relación de relujo. Para tener una visión un poco más precisa en la **Figura Nº 32** se muestra claramente este hecho, ya que la alimentación es de un 10% y la línea de operación se encuentra por encima, trayendo como consecuencia la construcción de mayor cantidad de platos y aún no se establece una relación de reflujo mínima.

 Tabla Nº 6. Resultados de la evaluación de la columna de platos a diferentes relaciones de reflujo con el sistema etanol-agua

Corrida №	Relación de Refluio (<i>R</i>)	Eficiencia (%) McCabe Thiele	Eficiencia (<i>f</i>) (%)
1	1/1		51,34
2	7/4		56,70
3	4/1	83,33	66,21
4	8/1	83,33	63,65

Este mismo hecho se vuelve a repetir en la corrida Nº 2 aunque con un R mayor que el primero; pero sin establecer, de igual manera, una condición mínima. En la corrida Nº 3 esta condición es muy próxima a establecerse; pero como consecuentemente por teoría un $R_{mín}$ define un número infinito de platos, esta condición de reflujo tampoco sería satisfactoria; sin embargo la composición residual es de un 2 %, lo que pudiera considerarse que el número de platos requeridos es 5.

Contrariamente a las tres corridas anteriores, la línea de operación de la corrida Nº 4 sí cruza con la línea de alimentación (véase la **Figura Nº 33**) y además se puede apreciar que, el último plato del diagrama coincide con la

composición residual, lo que indica que el número de platos requeridos para una relación de reflujo de 8/1 es de 5 para dar una eficiencia de un 83,33 %, y en consecuencia puede establecerse como una adecuada condición de trabajo.

Figura Nº 32. Construcción de los de los platos en el diagrama XY por el método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria etanol-agua con un R = 1/1.

Para cada uno de estos casos se determinó la eficiencia por el método de la fracción vaporizada lo que sirve de comparación con el método gráfico McCabe Thiele y donde se puede apreciar un comportamiento lógico en las dos últimas corridas donde se logra una mayor eficiencia. Si bien es de notar la eficiencia por el método gráfico es de 83,33 % mientras que por el de la fracción vaporizada es

de un 63 y 66 % respectivamente indicando que ambos métodos pueden ser aplicables con fines prácticos. No obstante, el método gráfico considera el número de platos reales, la composición de la alimentación, la composición en el residuo, la construcción de la línea de operación y la relación de reflujo, lo que origina una estimación de la eficiencia más próxima a la realidad por este método.

Figura Nº 33. Construcción de los de los platos en el diagrama XY por el método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria etanol-agua con R = 8/1.

Para la eficiencia por el método de la fracción vaporizada (f) que considera las relaciones molares del destilado y la alimentación se justifica por el hecho de que cuando se opera el equipo existen factores de pérdida del destilado

el cual repercute en el resultado, como es el caso de que el sistema está abierto al ambiente por la parte final del condensador.

Otro aspecto a considerar es el agua del condensador, ya que no se empleó agua procedente de un sistema de enfriamiento que lograra disminuir la temperatura de este fluido por debajo de la temperatura ambiente, es decir, que para la condensación del destilado se procedió de la misma manera que en el caso de la Torre de Relleno, lo que disminuye la eficiencia en la condensación del vapor destilado.

El sistema de conexiones y mangueras complementan el hecho de esta baja eficiencia ya que su longitud implica retención del destilado, repercutiendo negativamente en este valor.

Para este sistema se puede apreciar que la eficiencia (método de la fracción vaporizada en la **tabla Nº 6**) va aumentando a medida que lo hace la relación de reflujo en las tres primeras corridas y cayendo ligeramente a un 63,65% en la última por condiciones ya mencionada con anterioridad además de requerir ajustes por fuga en una de las abrazaderas, durante esta corrida.

4.2.2. Mezcla: Isopropanol-Agua

Para el caso de las mezclas de isopropanol-agua se realizaron cinco corridas a relaciones de reflujo diferentes, como se muestra en la **tabla Nº 7** y en donde se puede apreciar que la eficiencia oscila entre 50 y 67%. No obstante, no hay que obviar los fundamentos teóricos de R_{min} de que cuando se trabaja con esta condición el número de platos se hace infinito; pero que, contrariamente al sistema etanol-agua, la curva de equilibrio proporciona una mayor flexibilidad al momento de construirlos, lo que trae como consecuencia que la composición del residuo a obtener se ubique en el tercer plato en las diferentes relaciones de reflujo de trabajo. (**Figura 34**).

Corrida №	Relación de	Eficiencia (%)	Eficiencia
	Reflujo (<i>R</i>)	McCabe Thiele	(<i>f</i>)(%)
1	3/4	50 - 67	59,72
2	6/5	50 - 67	57,74
3	7/4	50 - 67	56,87
4	7/2	50 - 67	59,49
5	11/3	50 - 67	58,42

Tabla Nº 7. Resultados de la evaluación de la columna de platos a diferentes relaciones de refluj
con el sistema Isopropanol-agua

Figura Nº 34. Construcción de los de los platos en el diagrama XY por el método gráfico McCabe Thiele para la determinación de la eficiencia de la mezcla binaria isopropanol-agua con R = 3/4.

Para este sistema pudiera decirse que el método gráfico McCabe Thiele no proporcionaría un resultado satisfactorio si se consideran todas las variables antes citadas puesto que el último plato encierra la composición del residuo y representaría un 50%, sin embargo, en cada una de los casos pudiera ser conveniente hablar de un cuarto plato ya que por razones previamente citadas del R_{mín} la cantidad de platos debe ser mayor, principalmente por que la línea de operación no intercepta con la línea de alimentación, y donde se estaría hablando de una eficiencia del 67%, que de una u otra manera al ser comparado con el del método de la fracción vaporizada tendría mayor coherencia con los resultados , ya que con este último método los valores de eficiencia oscilan entre 56 y 60%.

Durante las experiencias realizadas, en los diferentes sistemas se presentaron algunos problemas operativos que pudieron haber afectado los resultados obtenidos. Es factores fueron los siguientes:

- No se contaba con dispositivo (reóstato o potenciómetro) que pudiera controlar el suministro de energía proporcionado al sistema, lo que trajo como consecuencia un calentamiento máximo y por ende una destilación muy rápida, influyendo sobre otros parámetros de la torre, tratados en los puntos sucesivos.
- 2. El borboteo en la superficie del plato es uno de los parámetros influyentes en los resultados de la eficiencia de la columna ya que este causado por choque del gas, a medida que asciende, con el líquido que viene en descenso, y en algunos instantes de la experiencia se pudo percibir salpicaduras del líquido en la superficie del plato influenciado por este mismo efecto.
- 3. Pudiera considerarse como formación de espuma un borboteo exagerado en el último plato, ya que es tanta la acumulación de líquido

sobre este que el vapor para abrirse paso levantaba el líquido bruscamente. La acumulación de líquido se debe a que parte del condensado se devolvía escurriéndose por las paredes más la incorporación del reflujo que se devuelve al sistema.

- 4. La inundación del plato es otro de los factores resaltantes en este proceso, puesto que después de cierto tiempo la acumulación de destilado en cada uno de los platos iba incrementando su volumen, sobre todo en los platos superiores.
- 5. La relación del reflujo debía fijarse controlando la válvula de paso y no el rotámetro, ya que al hacerlo de manera contraria no se lograba una estabilización del equipo para tomar una lectura confiable.

La relación de relujo es un factor a considerar para la construcción de la línea de operación la cual define el corte con y en el diagrama x-y, y a la vez demuestra que a medida que se hace más grande este valor se va acercando a la diagonal lo que representa una mejor condición de trabajo, ya que garantiza que esta esté por debajo de la curva de equilibrio, de manera idéntica a como se hizo en los diagramas construidos en la torre de relleno.

A modo comparativo de estos resultados, se pueden considerar aceptables e incluso satisfactorios, ya que si se toman en cuenta, para futuras correcciones, todos los factores a los cuales se hicieron mención pudieran lograrse valores entre 90 y 95 % como se obtiene en torre de relleno del Laboratorio de Ingeniería Química de la Facultad de Ingeniería.

Uno de los principales factores por lo cual se obtuvieron eficiencias entre 50 y 68 % (**Tablas Nº 4 y 5**) es que no se contaba con un chiller o un equipo de enfriamiento para aumentar la eficiencia de los condensadores y lo que obligaba a comportarse como un condensador parcial. Entre otros factores influyentes se
encuentra el borboteo brusco en el calderín, el calentamiento, la abertura en el condensador y las fugas en el sistema.

Ahora bien, si se observa en las **Tablas 6 y 7**, correspondiente a la de la torre de platos, la mínima eficiencia es de 51 % y la máxima de de 66 % lo que permite afirmar nuevamente la aceptabilidad de los resultados al ser comparados con los valores de 80 a 85 % obtenidos de las experiencias en la Torre de platos del laboratorio de Ingeniería Química.

Se consideran factores influyentes en este último equipo, el borboteo y la inundación del plato, la cantidad de energía suministrada, la abertura den el condensador, la falta de un equipo de enfriamiento o chiller y las fugas que se presentaron en las corridas.

CONCLUSIONES

- La instalación y puesta en marcha de las columnas de rectificación hacen posible la realización de las prácticas en instalaciones del Laboratorio de Tecnología de la FACYT.
- Las columnas de rectificación instaladas dan resultados satisfactorios de eficiencia.
- Los equipos y requerimientos básicos para el montaje de las columnas se ajustaron de acuerdo a las condiciones del laboratorio, por lo que no habrá dificultad de manipulación de las mismas.
- 4. Ambas torres son idóneas para trabajar con mezclas de etanol-agua e isopropanol-agua.
- En las torres se pueden ajustar diferentes condiciones de trabajo donde se puede evaluar la relación de reflujo, composición de la alimentación, residuo y el destilado.
- 6. El manual de operación de cada torre le da la facilidad al estudiante de manipular correctamente estos equipos.
- 7. Tanto el método de la fracción vaporizada como el de McCabe Thiele pueden utilizarse para evaluar la eficiencia de una torre de platos, aunque siempre se obtendrán eficiencias mayores con este último ya que toma en cuenta el número de platos reales, la composición de la alimentación, la composición en el residuo, la construcción de la línea de operación y la relación de reflujo.
- 8. La relación de reflujo no tuvo una influencia marcada sobre la eficiencia, otros factores desde el punto de vista operativo sí afectaron el proceso. Estas condiciones fueron: cantidad de energía suministrada al sistema, temperatura del agua del condensador y abertura de la salida del condensador en el tope de la columna.

 El sistema etanol-agua presenta un azeótropo que permite obtener etanol hasta un 95-96% de pureza, mientras que el sistema isopropanol-agua hasta un 70% por lo que no se lograron purezas del 100%.

Torre de Relleno.

- 10. Se obtuvo una eficiencia, para la torre de relleno, entre 30 y 55% calculadas mediante el método de la Fracción Vaporizada utilizando una mezcla etanol-agua, y entre 62 y 67 % con una mezcla isopropanol-agua.
- 11. Se obtuvo un rendimiento, para la torre de relleno, entre 97 y 99% calculados mediante la ecuación de Lord Rayleigh utilizando una mezcla etanol-agua, y entre 92 y 99 % con una mezcla isopropanol-agua.
- 12. La mejor relación de reflujo para trabajar con la torre de relleno con un sistema etanol-agua es de 4/1 mientras que para el sistema isopropanolagua son entre los R = 4/3 y R = 7/2, ya que permiten trabajar con líneas de operación por debajo de la curva de equilibrio.
- 13. Los problemas suscitados durante la operación de la torre de relleno fueron: borboteo en el calderín, fugas en el sistema, enfriamiento y condensación parcial del destilado.

Torre de Platos.

- 14. Se obtuvo una eficiencia, para la torre de relleno, entre 51 y 66% calculadas mediante el método de la Fracción Vaporizada utilizando una mezcla etanol-agua, y entre 56 y 59 % con una mezcla isopropanol-agua.
- 15.La mejor relación de reflujo para trabajar con la torre de platos con un sistema etanol-agua es de R = 4/1 a R = 8/1 mientras que para el sistema isopropanol-agua son entre los R = 7/2 y R = 11/3, ya que permiten trabajar con líneas de operación por debajo de la curva de equilibrio.

16. Los problemas suscitados durante la operación de la torre de platos fueron: borboteo e inundación en los platos, calentamiento excesivo, fugas en el sistema, enfriamiento y condensación parcial del destilado.

RECOMENDACIONES

- Se recomienda la adquisición y uso de un Chiller para el enfriamiento del agua de los condensadores en ambas torres, ya que con este equipo se estaría:
 - Aumentando la eficiencia de los condensadores al proporcionar mayor enfriamiento y así evitar pérdida de vapor.
 - b. Utilizando la cantidad de agua necesaria con un recirculación constante en los condensadores.
 - c. Evitando el derrame o el bote de agua durante la realización de la práctica.
 - d. Evitando la proliferación de materia orgánica dentro de los condensadores.
- 2. La manipulación de las torres por parte de los alumnos debe ser supervisada por el técnico del laboratorio o profesor.
- Para obtener mejores resultados se recomienda trabajar de acuerdo a las condiciones preestablecidas en cada uno de los manuales de operación respectivamente.

Torre de relleno.

- Sustituir el embudo de decantación empleado para la recolección del destilado por otro alargado con graduaciones para que al momento de realizar las mediciones volumétricas.
- La base de madera de la rejilla puede reemplazarse por una de mármol para darle mayor durabilidad, ya que el derrame del fluido de trabajo sobre ésta, ocasionará su deterioro.

Torre de platos.

- Diseñar y/o adquirir platos en acero inoxidable, aluminio, bronce o teflón haciendo una distribución de los orificios del mismo en arreglo triangular o cuadrado.
- 7. No dejar destilar a sequedad, ni dejar que el nivel esté por debajo de la resistencia ya que esta puede quemarse con facilidad.
- Para una mayor y mejor operabilidad de la torre de plato es esencial la construcción o ensamble del panel de control con tablero de acero inoxidable, lo cual conlleva a que se disponga de:
 - a. Ocho termocuplas
 - b. Un display
 - c. Un selector de 12 posiciones
 - d. Un voltímetro
 - e. Un amperímetro
 - f. Un potenciómetro o reóstato
 - g. Switch ON/OFF.
- Es necesario la adquisición de una sección adicional de vidrio con reducción para ubicarla luego del último plato, de esta manera se evitaría la descarga directa del reflujo sobre el mismo.
- 10. El sistema de válvulas y conexiones pudieran empotrarse sobre un panel de acero inoxidable para cubrir las conexiones y dejar sólo el sistema de llaves para mejor manipulación de las mismas.
- 11. Instalar un potenciómetro o reóstato el cual permitirá controlar con mayor eficiencia el calentamiento en la torre de platos.
- 12. Proporcionar de manera gradual energía al sistema para evitar posibles problemas típicos de las torres como lo es el borboteo y la inundación del plato.

BIBLIOGRAFÍA

BIBLIOGRAFÍA

Ballesteros, Rubén. 2000. **Dodecámeno.** Anuario FACYT Nº 1. Editado por. la Universidad de Carabobo.

Cedeño, O., Pérez, C. y otros. 2001 Recuperación de Alcohol Etílico a partir de Pulpa de Piña Fermentada en la Columna de Destilación de Platos Perforados del Laboratorio de Ingeniería Química. Universidad de Carabobo. Venezuela.

Galicia Pineda, Maria Luisa. Marzo 2006. **Prácticas de Laboratorio, Procesos de Separación II. UNAM.** Disponible en: http://depa.pquim.unam.mx/~luimary/PDF/Procesos%20II.pdf

Gomis, Marcilla.2005. Introducción a las operaciones de separación. Cálculos por etapas de equilibrio. Textos Docentes. Disponible en: http://publicaciones.ua.es./LibrosPDF/84-7908-405-7/84-7908-405-7.pdf

Hurtado, Jacqueline. 2004. **El proyecto de Investigación**. Tercera edición. Ediciones Quirón, S.A. (Fundación Sypal). Caracas.

Hurtado, Jacqueline. 2005. **Como Formular Objetivos de Investigación**. Tercera edición. Ediciones Quirón, S.A. (Fundación Sypal). Caracas.

Kister, Henry Z. 1992. **Distillation – Design –.** Primera Edición. Editorial McGraw-Hill. Estados Unidos.

McCabe-Smith. 1981. **Operaciones Básicas de Ingeniería Química.** Tomo II. Primera Edición. Editorial Reverté, S.A. España.

McCabe-Smith-Harriott. 2002. **Operaciones Unitarias en Ingeniería Química.** Sexta Edición. Editorial McGraw-Hill. México.

Pérez, C., Rebolledo, D., y otros, 2000. Evaluación de la de la Eficiencia de la Torre de Destilación de Platos Perforados del Laboratorio de Ingeniería Química, utilizando una Mezcla Agua-Freeztone en el Condensador de Tope del Equipo. Universidad de Carabobo. Venezuela.

Perry, Robert H. **Manual del Ingeniero Químico.** Tomo II. Sexta Edición. Editorial McGraw Hill. México. 1992

Reyes Labarta, Juan Antonio. **Diseño de columnas de rectificación y** extracción multicomponente. Cálculo del reflujo. Mínimo. Universidad de Alicante. 1998. Disponible en: http://biblioteca.universia.net/html bura/ficha/params/id/3818.html

Sierra, Adrián 2.004. Simulación de Sistema de Control Retroalimentado para la Torre de Destilación de Platos por Cargas del Laboratorio de Ingeniería Química. Universidad de Carabobo. Venezuela.

Treybal, Robert E. 2003. **Operaciones de Transferencia de Masa**. Reimpresión de la Segunda edición. Editorial McGraw-Hill. Segunda edición. México.

Treybal, Robert E. 1984. **Operaciones de Transferencia de Masa**. Primera edición. Editorial McGraw-Hill. Segunda edición. México.

Treybal, Robert E. 1980. **Mass Transfer Operations.** Segunda edición. Editorial McGraw-Hill. Segunda edición. New York.

Yamal, Evelyn, 2005. Evaluación Comparativa del Proceso Manual y Automatizado de una Torre de Destilación de Platos Perforados. Universidad de Carabobo. Venezuela.

APENDICE A

CÁLCULO TÍPICO

A continuación se presenta los cálculos típicos empleados para determinar el rendimiento y la eficiencia para cada una de las torres, así como también se anexa, al final de este apéndice, la nomenclatura que se utilizó en estos cálculos.

TORRE DE RELLENO

Determinación del rendimiento del equipo apoyándose en la ecuación de Lord Rayleigh:

1.- Corrección de los diferentes Índices de Refracción obtenidos experimentalmente de acuerdo la siguiente ecuación, (véanse las **tablas C1 a C6** en el apéndice C):

Se tomó el valor experimental 1,3485 que fue medido a 26º C, el índice corregido será:

$$\eta_D^{20} = \eta_D^T + 4x10^{-4} * (T - 20) =$$

$$\eta_D^{20} = 1,3485 + 4x10^{-4} * (26 - 20) =$$

$$\eta_D^{20} = 1,3509$$

Para cada un de los valores obtenidos experimentales se les realizó las respectiva corrección, ya que de estos valores dependen el cálculo del área de bajo la curva.

2.- Apoyándose en la curva de calibración η_D^{20} vs x se obtiene x.

Figura Nº A1. Intersección del Valor $\eta_D = 1,3509$ en la curva de calibración para obtener el valor de x = 13,5

Para los demás valores, de todas las corridas, se siguió el mismo procedimiento gráfico, (véanse las **tablas C1 a C6 en el apéndice C**).

3.- Para cada uno de los valores de la gráfica molar en equilibrio (x) se obtiene un valor de fracción molar (y^*) utilizando la curva de equilibrio del sistema binario etanol-agua.

Figura Nº A2. Intersección de la composición del vapor x = 0,135 para obtener la composición en el equilibrio $y^* = 0.482$

Para los demás valores, véanse las tablas C7 a C12 en el apéndice C.

4.- Con cada uno de estos valores de composición del equilibrio líquidovapor se determina $1/(y^*-x)y$ se construye el grafico $1/(y^*-x)vs x$ para obtener el área bajo la curva que representa la resolución gráfica de la integral planteada en la ecuación de Rayleigh.

Figura Nº A3. Representación gráfica para determinar el área bajo la curva de la ecuación de Lord Rayleigh

Utilizando el programa Maple 7.0 ® se obtuvo que el resultado de la integral para el intervalo entre las fracciones 0,031 y 0,135 fue de:

$$\int_{0.031}^{0.135} \frac{dx}{y^* - x} = 0,34972$$

Donde $y^* = -48,087x^6 + 161,76x^5 - 212,75x^4 + 138,81x^3 - 46,669x^2 + 7,9335$ es la ecuación de la curva de tendencia del equilibrio binario etanol-agua en este intervalo de integración.

5.- Número de moles iniciales de la mezcla alimentados al sistema:

5.1.-Peso molecular de la mezcla inicial.

$$M_{m} = x_{E} * M_{E} + x_{A}M_{A}$$
$$M_{m} = 0,135 * 46.07 + 0,865 * 18,016$$

$$M_m = 21,80329 \, g/mol$$

5.2.-Densidad de mezcla inicial:

$$\rho_m = x_E * \rho_E + x_A \rho_A$$
$$\rho_m = 0,135 * 0,789 + 0,865 * 0,996$$
$$M_m = 0,968055 \, g/ml$$

$$F = 750ml * \frac{0.968055g}{ml} * \frac{1mol}{21,80329g} = 33,299619mol$$

6.- Número de moles finales de la mezcla (residual) del sistema (experimental):

6.1.-Peso molecular de la mezcla residual.

$$M_{m} = x_{E} * M_{E} + x_{A}M_{A}$$
$$M_{m} = 0,031 * 46.07 + 0,969 * 18,016$$
$$M_{m} = 18,885674 \, g/mol$$

6.2.-Densidad de mezcla residual:

$$\rho_m = x_E * \rho_E + x_A \rho_A$$

$$\rho_m = 0,031*0,789+0,969*0,996$$

$$M_m = 0,989583 \, g/ml$$

$$W_{Exp} = 750ml * \frac{0.989583g}{ml} * \frac{1mol}{18,885674g} = 23,4221771mol$$

6.- Número de moles finales de la mezcla del sistema de acuerdo a la ecuación de Lord Rayleigh (Teórico):

$$Ln \frac{F}{W_{T}} = 0,34972$$
$$\frac{F}{W_{T}} = e^{0,34972}$$
$$W_{T} = \frac{33,299619 mol}{e^{0,34972}}$$

$$W_T = 23,47241606 mol$$

7.- Cálculo del rendimiento:

% Re
$$nd = \frac{23,4221771mol}{23,47241606mol} *100 = 99,79\%$$

Para calcular la eficiencia de la torre se utilizó la fracción vaporizada

8.- Se calcula el peso molecular de la mezcla del destilado.

$$M_m = x_E * M_E + x_A M_A$$

 $M_m = 0.95 * 46.07 + 0.05 * 18,016$
 $M_m = 44,6673g / mol$

9.- Se calcula la densidad de la mezcla del destilado.

$$\rho_m = x_E * \rho_E + x_A \rho_A$$

$$\rho_m = 0.95 * 0.789 + 0.05 * 0.996$$

$$\rho_m = 0.79935 g / ml$$

10.- Se calcula el número de moles de la mezcla del destilado.

$$D_{Exp} = 175ml * \frac{0,79935g}{ml} * \frac{1mol}{44,6673g} = 3,13173mol$$

11.- Se determina la fracción vaporizada experimental.

$$f_{Exp} = \frac{D}{F} = \frac{3,13173mol}{33,299619mol} = 0,09404$$

12.- Se determina la fracción vaporizada teórica.

A través del balance de masa:

$$F = D + W$$

Se obtiene el Nº de moles teóricos en el destilado:

$$D = F - W = 33,299619 mol - 23,4221771 mol = 9,8774419 mol$$

$$f_T = \frac{D}{F} = \frac{9,8774419mol}{33,299619mol} = 0,29662$$

13.- Se determina la eficiencia.

$$\% Efic = \frac{0,09404}{0,29662} * 100 = 31.70\%$$

TORRE DE PLATOS

Para determinar la eficiencia de la torre de plato se procedió de la siguiente manera:

1. Se corrigieron los diferentes Índices de Refracción obtenidos experimentalmente, (véanse tablas F1 a F12 en el apéndice F):

$$\eta_D^{20} = \eta_D^T + 4x10^{-4} * (T - 20) =$$

$$\eta_D^{20} = 1,3550 + 4x10^{-4} * (26 - 20) =$$

$$\eta_D^{20} = 1,3574$$

Con apoyo de la curva de calibración isopropanol-agua se determinó las respectivas composiciones de la alimentación, residuo y destilado (véase Figura Nº B3 en el apéndice B).

3. Con los respectivos caudales obtenidos experimentalmente del destilado y el reflujo se determina la relación de reflujo (R) ya expresada en la tabla de datos, y cuyo valor es de 0,7507 para la corrida Nº 1. **(Tabla Nº F1 en el apéndice F)**

4. Con la relación $(\frac{X_D}{R+1})$ se consigue el corte en y del diagrama de equilibrio del sistema binario isopropanol-agua para trazar la línea de operación con la composición del destilado que corta en la diagonal, como se muestra en el diagrama.

Figura Nº A4. Diagrama de composición xy de la mezcla isopropanol-agua para la construcción de la línea de operación.

5. Posteriormente se trazan los platos según indica el método McCabe Thiele como se muestra en la **Figura Nº A5**.

Figura Nº A5. Diagrama de composición xy de la mezcla isopropanol-agua para determinar el Nº de platos por el método de McCabe Thiele.

Con el número de platos obtenidos en el diagrama y los platos teóricos, los cuales son 6 se obtiene una eficiencia del 50 %.

A modo de comparación y de manera similar a como se hizo con la torre de relleno se determina la fracción vaporizada teórica.

6. Se calcula el peso molecular de la mezcla del destilado.

$$M_{m} = x_{E} * M_{E} + x_{A}M_{A}$$
$$M_{m} = 0.55 * 46.07 + 0.45 * 18,016$$
$$M_{m} = 41,1567 \, g \,/ \, mol$$

7.- Se calcula la densidad de la mezcla del destilado.

$$\rho_m = x_E * \rho_E + x_A \rho_A$$

$$\rho_m = 0.55 * 0.789 + 0.45 * 0.996$$

$$\rho_m = 0.88215 g / ml$$

8.- Se calcula el número de moles de la mezcla del destilado.

$$D_{Exp} = 1980ml * \frac{0,88215g}{ml} * \frac{1mol}{41,1567g} = 42,43919mol$$

9.- Se determina la fracción vaporizada experimental.

$$f_{Exo} = \frac{D}{F} = \frac{42,43919mol}{428,01992mol} = 0,099152$$

10- Se determina la fracción vaporizada teórica.

A través del balance de masa:

$$F = D + W$$

Se obtiene el Nº de moles teóricos en el destilado:

$$D = F - W = 428,01992 mol - 367,5527 mol = 60,46722 mol$$

Y posteriormente determina la fracción vaporizada teórica.

$$f_T = \frac{D}{F} = \frac{60,46722mol}{428,01992mol} = 0,1660263$$

13.- Se determina la eficiencia.

$$\% Efic = \frac{0,0991524}{0,1660263} * 100 = 59,72\%$$

Nomenclatura Usada en este Trabajo Especial de Grado

Adim.	Adimensional.
A.R:	Altura del Relleno (cm).
<i>x</i> :	Composición molar en la fase de vapor (adim).
$ ho_{\scriptscriptstyle A}$	Densidad del Agua (g/ml).
$ ho_{\scriptscriptstyle E}$	Densidad del etanol (g/ml).
% Efic	Eficiencia (%).
X_W	Fracción molar en el residuo (adim).
у*	Fracción molar en equilibrio con el líquido (adim).
x_F :	Fracción molar en la alimentación.
$f_{\rm exp}$	Fracción vaporizada experimental.
f_T	Fracción vaporizada teórica.
η_D^{20} :	Índice de Refracción corregido a 20 ºC
$n_{\rm p}^T$:	Índice de Refracción experimental (Leído)
F:	Moles cargados de composición x_F (gmol).
W	Moles residuales de composición x_w (gmol).
W_{Exp}	Moles residuales de composición x_w (Experimental) (gmol).
W_T	Moles residuales de composición x_w (Teórico) (gmol).
M_{m}	Peso Molecular de mezcla (g/mol).
M_A	Peso Molecular del agua (g/mol).
M_{E}	Peso Molecular del etanol (g/mol).
PFMC:	Posición Final en el medidor de la Manta de Calentamiento
PIMC:	Posición Inicial en el medidor de la Manta de Calentamiento
P.A:	Presión atmosférica (mmHg).
R:	Relación de Reflujo (adim).
% Rend:	Rendimiento (%)
T:	Temperatura (ºC)
T. Amb:	Temperatura ambiente (ºC)

- T.E: Temperatura de Ebullición (°C)
- T.D: Temperatura del Destilado(°C)
- V.D: Volumen del destilado (ml)
- V.A: Volumen Alimentado (ml)
- V.a: Volumen de agua (ml)
- V.e: Volumen de etanol (ml)
- V.R: Volumen del residuo (ml)
- V.P: Volumen perdido (ml)

APÉNDICE B

APÉNDICE B

Tabla Nº B1. Datos para construir la curva de calibración del rotámetro

Caudal	Abertura del
(ml/s)	Rotámetro
0	0
0,0133	2
0,0233	5
0,0323	7
0,0396	10
0,0573	15
0,0859	20
0,1033	23
0,1163	24
0,1269	25
0,1310	26
0,1442	27
0,1678	30
0,2176	31

Figura Nº B1. Curva de calibración del Rotámetro. Torre de Destilación de relleno.

Tabla Nº B2. Datos para construir la curva de calibración Etanol – Agua

 $\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$

1,3601

1,3621

% Molar

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

55,00

60,00

65,00 70,00

75,00

80,00

85,00

90,00

95,00

100,00

Figura Nº B2. Curva de calibración Etanol-agua. Indice de refracción corregido vs. Concentración molar.

Tabla Nº B3. Datos para construir la curva de calibración Isopropanol -Agua

		1.3800 -					<u> </u>											
% Molar	(η_D^{20})	,		- + + - + - - +	i i i i							 					- + - - - + - -	·
0,00	1,3330	1,3750 -			<u></u>			·	· 	<u>+ +</u>	 				<mark>┥╴╴╴╴╴╸</mark> ╴			·
5,00	1,3482																	
10,00	1,3557	1,3700 -			-1 +-	_ _ _			· +	+ +	_		_ +			· +	_ 	· L -
15,00	1,3602			- + - - + - - + - - + -	+ +		- +	· ⊢ →	· + - - - · + - - -	+ +		-+		⊢ -l -l- + - ⊢ -l -l- + -		+	- + - - - + - -	· +
20,00	1,3644	_9 1,3650 -	+	- + - - + -		Z	- + -i -		+	+ +	+ -		- +	+ + -		+	- + -1-	·
25,00	1,3673	gid	i- + -i - 		?-		- + -i - - + -i -					 	і— т — — — т — —	г і- т - г т -		+	- + - - - + - -	·
30,00	1,3693	0 1.3600 -								T T								
35,00	1,3708	S ,,		· -/			· - + -/ - · - + -/ -		/ = -1E-1	$2x^{6} + 4$	4E-10x ⁵ - 5	E-08x ⁴	+ 4E-06	x ³ - 0,0001	x^{2} + 0,003	34x + 1	,3335	·
40,00	1,3718	, OI 3550 -										R ²	= 0,998	6				. <u>.</u> .
45,00	1,3728	efra		- + _ _ + . - + _ _ + .		$\begin{array}{c} -1 - \vdash \neg \\ -1 - \vdash \neg \end{array}$	- + - -	· ⊢ →	+ - - -	+ +	+	- + - +	_ + _ +	⊢ → −I− + - ⊢ → −I− + -		+	_ + _ - _ + _ -	· ⊨ =
50,00	1,3737	9 2 9 1 3500 -	- + - - + + + - -	- + - - + -	+ +		- + - -	· ⊢ +	+	+ +	+	-+	- +	⊢ → −I− + - ⊢ → −I− + -		+	- + - - - + - -	· + -
55,00	1,3742	b	/	- + - - + · - + - - + ·	-i - - + -i - - +		- + -i- - + -i-	·	+	+ +		 	- +			+	- + - - - + - -	·
60,00	1,3742	ip 1 3450 -	/		ד = - ד ד					T T T T			- <u>-</u>	г т - i- т - г т - i- т -				
65,00	1,3747	<u> </u>								<u>+</u> <u>+</u>						<u>+</u>		
70,00	1,3752	1 2400	/-'/	- <u>-</u> _'_ <u>-</u> - - <u>-</u> _'_ <u>-</u>	┆╌┠╴┼		- + -'-			+ +				└! _!_ ┴ - └! _!_ ↓ -	-\- -		''- 	·
75,00	1,3752	1,3400 -			J I		·	. L J	. ⊥ _l _ L ∔ _l _ L	⊥ ⊥ ∔ ∔] _	_ L _ L	L		- L J _l-	⊥ ↓	_ _	. L
80,00	1,3753	4 0050	-/+ -!- + -!	- + - - + -	+		- + - -	· ⊢ → - -	+ - - -	+ +		- + - + -	- +	⊢ + - - + - ⊢ + - - + -		+	- + - - - + - -	· +
85,00	1,3753	1,3350 -		- + - - + -	+	-1-+	- + -i -	·	+	+ +			- +			+		
90,00	1,3757	4	+	- + -i- + - - + -i	-i - - + -i - - +	-i			+	+ + + +			- + 			+	;- + -;- ;- + -;-	
95,00	1,3751	1,3300 - 0,0	0 10.0	00	20,00	30	+),00	40.0	0	50,00	60.	00	70,00	80),00	90,00		100,00
100,00	1,3750							Ċ	oncent	ación	(% Molar)							

Figura Nº B3. Curva de calibración Isopropanol-agua. Indice de refracción corregido vs. Concentración molar.

Tabla Nº C1: Datos experimentales de la corrida Nº 1 del sistema etanol-agua, para la torre de relleno
--

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3575	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3585
A. R.:	73 cm	PIMC	5
T. E.:	80 °C	PFMC	6
T. D.:	77 °C		
V. A.: (ml)	585		

$$R \approx \frac{1}{9}$$

CA	LDERIN		TOPE		FON	NDO	DESTILADO		
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3575	1,3585	80,0	1,3590	1,3604	77,0	1,3585	1,3613		
1,3575	1,3585	81,0	1,3590	1,3604	77,0	1,3585	1,3613		
1,3575	1,3585	81,0	1,3590	1,3604	77,0	1,3585	1,3613		
1,3575	1,3585	81,0	1,3590	1,3604	77,0	1,3590	1,3618		
1,3575	1,3585	82,0	1,3590	1,3604	77,0	1,3590	1,3618		
1,3570	1,3580	82,0	1,3585	1,3599	77,0	1,3595	1,3623	1,3590	1,3618
1,3555	1,3565	82,0	1,3585	1,3599	77,0	1,3590	1,3618	1,3590	1,3618
1,3550	1,3560	83,0	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3540	1,3550	84,0	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3515	1,3525	84,5	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3480	1,3490	86,0	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3460	1,3470	86,5	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3405	1,3415	87,5	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3380	1,3390	89,0	1,3590	1,3604	77,0	1,3610	1,3638	1,3590	1,3618
1,3340	1,3350	91,5	1,3590	1,3604	77,0	1,3580	1,3608	1,3590	1,3618

Datos	6		Cau	udal R.T.			Caudal Dest.		Relación
V. D. (ml)	271	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R.
V. R. (ml)	193	1,20	51,59	0,0233	5	3,10	10,26	0,3021	0,0770
V. P.	121	1,35	54,97	0,0246	5	2,20	14,60	0,1507	0,1630
T. Amb.	27 °C	1,50	67,41	0,0223	5	1,80	7,41	0,2429	0,0916
P.A. (mmHg)	728	1,40	55,59	0,0252	5	3,10	15,59	0,1988	0,1267
		1,10	49,65	0,0222	5	1,80	9,65	0,1865	0,1188
			Q. R.T. =	0,0196			Q. Dest. =	0,2162	0,1154

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3565	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3581
A. R.:	73 cm	PIMC	6
T. E.:	79 °C	PFMC	7
T. D.:	77 °C	V. e:	350 ml
V. A.: (ml)	650	V. a:	300 ml

Tabla Nº C2: Datos experimentales de la corrida Nº 2 del sistema etanol-agua, para la torre de relleno.

P	~	2
Λ	\sim	5

CA	LDERIN		TOPE			FO	NDO	DESTILADO		
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	
1,3540	1,3568	80,0	1,3585	1,3613	77,0	1,3580	1,3608			
1,3535	1,3563	81,0	1,3585	1,3613	77,0	1,3590	1,3618			
1,3535	1,3563	82,0	1,3585	1,3613	77,0	1,3585	1,3613			
1,3530	1,3558	82,0	1,3580	1,3608	77,0	1,3585	1,3613	1,3585	1,3613	
1,3520	1,3548	82,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3505	1,3533	82,5	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3480	1,3508	83,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3475	1,3503	84,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3455	1,3483	85,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3425	1,3453	86,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3395	1,3423	87,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3380	1,3408	88,0	1,3585	1,3613	77,0	1,3585	1,3613	1,3585	1,3613	
1,3360	1,3388	90,0	1,3585	1,3613	77,0	1,3560	1,3588	1,3585	1,3613	
1,3340	1,3368	91,0	1,3580	1,3608	77,5	1,3465	1,3493	1,3585	1,3613	
1,3335	1,3363	92,0	1,3575	1,3603	78,0	1,3420	1,3448	1,3585	1,3613	
1,3315	1,3343	95,0	1,3560	1,3588	79,0	1,3355	1,3383	1,3580	1,3608	

Datos	S		Cau	idal R.T.			Caudal Dest.		Relación
V. D. (ml)	327	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R.
V. R. (ml)	215	2,50	81,59	0,0306	8	1,40	16,24	0,0862	0,3554
V. P.	108	1,30	41,86	0,0311	8	2,00	29,81	0,0671	0,4629
T. Amb.	26 °C	1,80	57,03	0,0316	8	2,40	34,29	0,0700	0,4509
P.A. (mmHg)	729	1,20	41,49	0,0289	8	3,10	43,51	0,0712	0,4059
			Q. R.T. =	0,0305			Q. Dest. =	0,0558	0,4188

Tabla Nº C3: Datos experimentales de la corrida Nº 3 del sistema etanol-agua, para la torre de relleno.*

$n_{\scriptscriptstyle D}$:	1,3495	$n_{\rm D}$ Corr.:	1,3523
A. R:	73 cm	PIMC	7
T. E.:	84 °C	PFMC	8
T. D.:	77 °C		
V. A: (ml)	750		

$$R \approx \frac{1}{1}$$

C	ALDERIN			TOPE			ONDO	DESTILADO	
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3475	1,3507	83,0	1,3600	1,3628	77,0	1,3615	1,3643	_	
1,3465	1,3497	83,0	1,3600	1,3628	77,0	1,3605	1,3633		
1,3450	1,3486	84,0	1,3600	1,3628	77,0	1,3605	1,3633		
1,3435	1,3471	85,0	1,3600	1,3628	77,0	1,3605	1,3633	1,3600	1,3628
1,3405	1,3441	86,0	1,3600	1,3628	77,0	1,3605	1,3633	1,3600	1,3628
1,3395	1,3431	88,0	1,3600	1,3628	77,0	1,3600	1,3628	1,3600	1,3628
1,3370	1,3410	89,0	1,3600	1,3628	77,0	1,3600	1,3628	1,3600	1,3628
1,3350	1,3390	90,0	1,3600	1,3628	77,0	1,3590	1,3618	1,3600	1,3628
1,3345	1,3385	92,0	1,3600	1,3628	77,0	1,3575	1,3603	1,3600	1,3628
1,3335	1,3375	95,0	1,3600	1,3628	77,0	1,3400	1,3428	1,3600	1,3628
1,3325	1,3365	96,0	1,3600	1,3628	77,0	1,3345	1,3373	1,3600	1,3628
1,3325	1,3365	97,0	1,3600	1,3628	78,0	1,3340	1,3368	1,3600	1,3628
1,3325	1,3365	97,0	1,3580	1,3608	78,0	1,3335	1,3363	1,3585	1,3613

Da	itos	Caudal del Reflujo				С	Relación		
V. Dest. (ml)	210	V (ml)	t (s)	Q (ml/s)	Abertura Rot.	V (ml)	t (s)	Q (ml/s)	R
V. Res. (ml)	413	2,70	41,85	0,0645	15	3,20	42,19	0,0758	0,8506
V. Perd.	127	2,20	34,31	0,0641	15	1,90	31,65	0,0600	1,0681
T. Amb.	22 °C	2,40	38,97	0,0616	15	2,40	37,00	0,0649	0,9494
P. Atmosf.	733 mmHg	2,30	36,66	0,0627	15	2,40	38,79	0,0619	1,0140
			Q. R.T. =	0,0632			Q. Dest. =	0,0657	0,9705

*(AGUARDIENTE SAN TOME)

Tabla Nº C4: Datos experimentales de la corrida Nº 4 del sistema etanol-agua, para la torre de relleno.

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3485	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3509
A. R.:	73 cm	Manta Inic.:	7
T. E.:	84 °C	Manta Fin.:	8
T. D.:	77 °C		
V. A.: (ml)	750		

CAI	LDERIN			ТОРЕ			NDO	DESTILADO	
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3450	1,3486	83,0	1,3580	1,3616	77,0	1,3595	1,3631		
1,3445	1,3481	83,0	1,3580	1,3616	77,0	1,3585	1,3621		
1,3445	1,3481	83,0	1,3580	1,3616	77,0	1,3585	1,3621		
1,3430	1,3466	85,0	1,3580	1,3616	77,0	1,3585	1,3621	1,3580	1,3616
1,3410	1,3446	86,0	1,3580	1,3616	77,0	1,3585	1,3621	1,3580	1,3616
1,3380	1,3416	88,0	1,3580	1,3616	77,0	1,3580	1,3616	1,3580	1,3616
1,3370	1,3406	89,0	1,3580	1,3616	77,0	1,3580	1,3616	1,3580	1,3616
1,3355	1,3391	91,0	1,3580	1,3616	77,0	1,3580	1,3616	1,3580	1,3616
1,3345	1,3381	93,0	1,3580	1,3616	78,0	1,3570	1,3606	1,3580	1,3616
1,3325	1,3361	96,0	1,3580	1,3616	78,0	1,3500	1,3536	1,3580	1,3616
1,3325	1,3361	96,0	1,3580	1,3616	84,0	1,3445	1,3481	1,3580	1,3616
1,3325	1,3361	96,0	1,3570	1,3606	91,0	1,3305	1,3341	1,3580	1,3616
1,3325	1,3361	97,0	1,3550	1,3586	93,0	1,3305	1,3341	1,3575	1,3611
1,3325	1,3361	97,0	1,3525	1,3561	94,0	1,3315	1,3351	1,3565	1,3601

Datos		Caudal del Reflujo				Ca	Relación		
V. D. (ml)	175	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	433	5,50	65,04	0,0846	19	8,50	175,06	0,0486	1,7416
V. P.	142	5,40	61,87	0,0873	19	5,50	111,19	0,0495	1,7645
T. Amb. (ºC)	27,5	5,50	66,28	0,0830	19	7,00	142,96	0,0490	1,6947
P.A. (mmHg)	738,8	5,00	64,92	0,0770	19	6,50	133,01	0,0489	1,5760
			Q. R.T. =	0,0830			Q. Dest. =	0,0490	1,6942

 $R \approx \frac{3}{2}$

Tabla Nº C5: Datos experimentales de la corrida Nº 5 del sistema etanol-agua, para la torre de relleno.*

$n_{\scriptscriptstyle D}$:	1,3475	$n_{\rm D}$ Corr.:	1,3507
A. Relleno:	73 cm	Manta Inic.:	7
T. Ebullic.:	83 °C	Manta Fin.:	8
T. Dest.:	77 °C		
V. Aliment. (ml)	750		

CAI	_DERIN			TOPE		FONDO		DESTILADO	
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3465	1,3497	83,0	1,3575	1,3603	77,0	1,3580	1,3608		
1,3465	1,3497	84,0	1,3575	1,3603	77,0	1,3580	1,3608		
1,3440	1,3472	85,0	1,3575	1,3603	77,0	1,3580	1,3608		
1,3405	1,3437	86,0	1,3575	1,3603	77,0	1,3580	1,3608	1,3575	1,3603
1,3405	1,3437	88,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3390	1,3422	89,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3365	1,3397	90,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3350	1,3382	92,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3335	1,3367	95,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3310	1,3342	96,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3305	1,3345	97,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3300	1,3340	97,0	1,3570	1,3598	78,0	1,3520	1,3548	1,3575	1,3603

Datos		Caudal del Reflujo				Ca	Relación		
V. Dest. (ml)	215	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. Residuo (ml)	419	2,60	26,84	0,0969	23	2,10	59,22	0,0355	2,7317
V. Perd. (ml)	116	3,10	28,94	0,1071	23	6,80	208,35	0,0326	3,2821
T. Amb. (⁰C)	28	2,90	30,07	0,0964	23	3,20	101,38	0,0316	3,0554
P. Atm. (mmHg)	730	3,00	28,71	0,1045	23	4,20	112,63	0,0373	2,8022
			Q. R.T. =	0,1012			Q. Dest. =	0,0342	2,9678

*(AGUARDIENTE EL RECREO)

 $R \approx \frac{3}{1}$

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3500	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3528
A. R.:	73 cm	PIMC	7
T. E.:	81 ºC	PFMC	7
T. D.:	77 °C	V.e:	250 ml
V. A.: (ml)	700	V.a:	450 ml

$$R \approx \frac{4}{1}$$

C	ALDERIN			TOPE		FOI	NDO	DEST	ILADO
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (⁰C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3480	1,3520	80,0	1,3590	1,3618	77,0	1,3590	1,3618		
1,3475	1,3515	80,0	1,3580	1,3608	77,0	1,3580	1,3608		
1,3475	1,3515	81,0	1,3580	1,3608	77,0	1,3580	1,3608		
1,3460	1,3500	81,0	1,3580	1,3608	77,0	1,3580	1,3608	1,3575	1,3603
1,3455	1,3495	82,0	1,3580	1,3608	77,0	1,3580	1,3608	1,3575	1,3603
1,3430	1,3470	82,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3420	1,3460	82,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3410	1,3450	82,0	1,3580	1,3608	77,0	1,3575	1,3603	1,3575	1,3603
1,3405	1,3445	82,5	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3375	1,3415	83,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3375	1,3415	84,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3370	1,3410	85,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3360	1,3400	86,0	1,3575	1,3603	77,0	1,3575	1,3603	1,3575	1,3603
1,3355	1,3395	87,0	1,3570	1,3598	78,0	1,3535	1,3563	1,3570	1,3598
1,3340	1,3380	95,0	1,3565	1,3593	78,0	1,3520	1,3548	1,3570	1,3598

Datos Caudal			l del Reflujo	del Reflujo		Caudal del Destilado			
V. Dest.	239	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. Residuo	407	3,30	25,19	0,1310	26	2,00	56,57	0,0354	3,7055
V. Perd.	54	2,20	19,46	0,1131	26	2,00	52,70	0,0380	2,9789
T. Amb.	29 °C	3,40	24,73	0,1375	26	1,70	57,99	0,0293	4,6899
P. Atm. (mmHg)	727	2,20	18,17	0,1211	26	1,20	42,66	0,0281	4,3043
			Q. R.T. =	0,1257			Q. Dest. =	0,0327	3,9196
APÉNDICE C

Mezcla Etanol-Agua

Tabla № C7. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida № 1 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,590	0,370	4,549
0,564	0,300	3,786
0,548	0,235	3,195
0,545	0,223	3,106
0,538	0,200	2,959
0,516	0,158	2,790
0,471	0,116	2,815
0,438	0,097	2,935
0,310	0,053	3,889
0,238	0,036	4,945

Figura Nº C1. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 1 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,561	0,290	3,685
0,550	0,245	3,274
0,547	0,230	3,157
0,543	0,217	3,064
0,537	0,197	2,942
0,524	0,170	2,823
0,495	0,134	2,773
0,490	0,130	2,778
0,460	0,109	2,848
0,403	0,082	3,111
0,330	0,058	3,674
0,292	0,048	4,104
0,231	0,035	5,091
0,167	0,023	6,899
0,150	0,020	7,660
0,104	0,012	10,909

Tabla Nº C8. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 2 del sistema etanol-agua, para la torre de relleno.

Figura Nº C2. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 21 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,518	0,160	2,795
0,511	0,151	2,778
0,506	0,145	2,772
0,486	0,127	2,783
0,480	0,122	2,795
0,438	0,097	2,935
0,418	0,088	3,029
0,396	0,079	3,159
0,385	0,075	3,230
0,306	0,052	3,933
0,292	0,048	4,104
0,262	0,041	4,535
0,248	0,038	4,768
0,200	0,029	5,818

Tabla Nº C9. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 3 del sistema etanol-agua, para la torre de relleno.

Figura Nº C3. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 3 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,494	0,133	2,774
0,483	0,124	2,789
0,441	0,099	2,921
0,367	0,069	3,357
0,334	0,059	3,640
0,259	0,041	4,572
0,213	0,031	5,483
0,165	0,022	7,013
0,077	0,008	14,457
0,067	0,007	16,554
0,061	0,006	18,161
0,042	0,003	25,886

Tabla Nº C10. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 4 del sistema etanol-agua, para la torre de relleno.

Figura Nº C4. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 4 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,513	0,153	2,781
0,496	0,135	2,772
0,483	0,124	2,789
0,465	0,112	2,833
0,440	0,098	2,926
0,376	0,072	3,291
0,351	0,064	3,486
0,296	0,049	4,053
0,238	0,036	4,945
0,224	0,033	5,249
0,190	0,027	6,128
0,156	0,021	7,385

Tabla Nº C11. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 5 del sistema etanol-agua, para la torre de relleno.

Figura Nº C5. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 5 del sistema etanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,496	0,135	2,772
0,462	0,110	2,843
0,457	0,107	2,860
0,429	0,093	2,973
0,387	0,076	3,211
0,312	0,053	3,868
0,285	0,047	4,185
0,241	0,037	4,899
0,208	0,030	5,610
0,141	0,018	8,123

Tabla Nº C12. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 6 del sistema etanol-agua, para la torre de relleno.

Figura Nº C6. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 6 del sistema etanol-agua, para la torre de relleno.

APÉNDICE D

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3490	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3518	
A. R.:	73 cm	PIMC	7	
T. E.:	83 °C	PFMC	8	
T. D.:	79 ⁰C			
V. A.: (ml)	750			

CAI	LDERIN			TOPE		FOI	NDO	DEST	ILADO
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3455	1,3491	83,0	1,3700	1,3736	79,0	1,3700	1,3736		
1,3455	1,3491	83,0	1,3705	1,3741	79,0	1,3705	1,3741		
1,3445	1,3481	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3440	1,3476	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3415	1,3451	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3395	1,3431	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3365	1,3401	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3350	1,3386	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3340	1,3376	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3325	1,3361	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1.3320	1.3356	96.0	1.3710	1.3746	79.0	1.3710	1.3746	1.3710	1.3746

Tabla Nº D1: Datos experimentales de la corrida Nº 1 del sistema Isopropanol-agua, para la torre de relleno.

Dato	S		Caudal del Reflujo Cau		udal del Destila	Relación			
V. D. (ml)	173,5	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	544	1,50	75,38	0,0199	6	5,00	35,70	0,1401	0,1421
V. P.	32,5	1,80	92,45	0,0195	6	5,50	36,14	0,1522	0,1279
T. Amb.	27 °C	1,30	56,71	0,0229	6	10,50	71,52	0,1468	0,1561
P.A. (mmHg)	731,5	1,60	84,80	0,0189	6	5,00	37,07	0,1349	0,1399
			Q. R.T. =	0,0203			Q. Dest. =	0,1435	0,1415

 $R \approx \frac{1}{7}$

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3540	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3568
A. R.:	73 cm	PIMC	7
T. E.:	83 °C	PFMC	8
T. D.:	79 ⁰C		
V. A.: (ml)	750		

Tabla Nº D2: Datos experimentales de la corrida Nº 2 del sistema Isopropanol-agua, para la torre de relleno.

CA	LDERIN		TOPE		FONDO		DESTILADO		
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3520	1,3556	83,0	1,3700	1,3736	79,0	1,3710	1,3746		
1,3515	1,3551	83,0	1,3705	1,3741	79,0	1,3710	1,3746		
1,3500	1,3536	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3490	1,3526	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3480	1,3516	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3455	1,3491	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3435	1,3471	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3420	1,3456	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3405	1,3441	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3375	1,3411	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3355	1,3391	96,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3345	1,3381	97,0	1,3710	1,3746	80,0	1,3710	1,3746	1,3710	1,3746
1,3325	1,3361	98,0	1,3710	1,3746	81,0	1,3710	1,3746	1,3710	1,3746

Datos	Datos		Caudal del Reflujo			Caudal del Destilado		Relación	
V. D. (ml)	196,5	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	463	3,00	75,98	0,0395	11	5,50	43,30	0,1270	0,3108
V. P.	90,5	3,50	97,02	0,0361	11	4,50	45,02	0,1000	0,3609
T. Amb.	27 °C	3,50	94,21	0,0372	11	5,00	48,32	0,1035	0,3590
P.A. (mmHg)	725,7	3,50	90,67	0,0386	11	5,70	50,19	0,1136	0,3399
			Q. R.T. =	0,0378			Q. Dest. =	0,1110	0,3427

 $R \approx \frac{1}{3}$

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3525	$\eta_D^{_{20}}$	1,3553		p 2
A. R.:	73 cm	PIMC	7		$R \approx \frac{1}{5}$
T. E.:	83 °C	PFMC	8		5
T. D.:	79 °C				
V. A.: (ml)	750				

CA	LDERIN			TOPE		FON	NDO	DEST	ILADO
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3500	1,3536	83,0	1,3710	1,3746	79,0	1,3715	1,3751		
1,3495	1,3531	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3475	1,3511	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3460	1,3496	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3430	1,3466	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3390	1,3426	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3380	1,3416	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3360	1,3396	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3340	1,3376	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3320	1,3356	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3310	1,3346	96,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746

Dato	S		Cauda	al del Reflujo		Caudal del Destilado			Relación
V. D. (ml)	242	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	479	3,50	66,63	0,0525	16	6,00	46,49	0,1291	0,4070
V. P.	29	3,50	69,16	0,0506	16	5,50	43,09	0,1276	0,3965
T. Amb.	26 °C	3,50	64,81	0,0540	16	5,00	39,85	0,1255	0,4304
P.A. (mmHg)	728,4	3,50	70,04	0,0500	16	6,50	49,56	0,1312	0,3810
			Q. R.T. =	0,0518			Q. Dest. =	0,1283	0,4037

Tabla Nº D3: Datos experimentales de la corrida Nº 3 del sistema Isopropanol-agua, para la torre de relleno.

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3505	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3533	P 2
A. R.:	73 cm	PIMC	7	$\Lambda \approx \frac{1}{2}$
T. E.:	83 °C	PFMC	8	3
T. D.:	79 ⁰C			
V. A.: (ml)	750			

Tabla Nº D4: Datos experimentales de la corrida Nº 4 del sistema Isopropanol-agua, para la torre de relleno.

CAL	DERIN			TOPE		FON	NDO	DEST	ILADO
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3480	1,3516	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3480	1,3516	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3450	1,3486	83,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3435	1,3471	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3425	1,3461	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3415	1,3451	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3395	1,3431	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3365	1,3401	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3350	1,3386	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3335	1,3371	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3315	1,3351	96,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746

Dato	S		Cauda	al del Reflujo		Caudal del Destilado			Relación
V. D. (ml)	214	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	511	4,50	72,94	0,0617	16	12,50	121,65	0,1028	0,6004
V. P.	25	4,30	68,87	0,0624	16	5,50	62,68	0,0877	0,7115
T. Amb.	29 °C	4,00	70,84	0,0565	16	7,80	95,46	0,0817	0,6910
P.A. (mmHg)	722,9	4,70	71,73	0,0655	16	9,40	97,37	0,0965	0,6787
			Q. R.T. =	0,0615			Q. Dest. =	0,0922	0,6704

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3520	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3548	P 4
A. R.:	73 cm	PIMC	7	$K \approx \frac{1}{2}$
T. E.:	83 °C	PFMC	8	3
T. D.:	79 ⁰C			
V. A.: (ml)	750			

CA	LDERIN			TOPE		FON	NDO	DEST	ILADO
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3500	1,3536	83,0	1,3700	1,3736	79,0	1,3710	1,3746		
1,3495	1,3531	83,0	1,3705	1,3741	79,0	1,3710	1,3746		
1,3480	1,3516	84,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3470	1,3506	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3460	1,3496	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3435	1,3471	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3415	1,3451	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3400	1,3436	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3385	1,3421	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3365	1,3401	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3355	1,3391	96,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3345	1,3381	97,0	1,3710	1,3746	80,0	1,3710	1,3746	1,3710	1,3746

Tabla Nº D5: Datos experimentales de la corrida Nº 5 del sistema Isopropanol-agua, para la torre de relleno.

Dato	S		Cauda	l del Reflujo		Caudal del Destilado			Relación
V. D. (ml)	153	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	541	3,50	22,63	0,1547	22	4,50	38,49	0,1169	1,3229
V. P.	56	3,50	19,82	0,1766	22	4,90	38,96	0,1258	1,4041
T. Amb.	27 °C	3,50	23,91	0,1464	22	5,00	40,54	0,1233	1,1869
P.A. (mmHg)	725,7	3,50	20,70	0,1691	22	4,50	38,23	0,1177	1,4364
			Q. R.T. =	0,1617			Q. Dest. =	0,1209	1,3376

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3535	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3563	D
A. R.:	73 cm	PIMC	7	$K \approx$
T. E.:	83 °C	PFMC	8	
T. D.:	79 °C			
V. A.: (ml)	750			

CAI	DERIN			TOPE		FON	NDO	DEST	ILADO
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3505	1,3541	83,0	1,3700	1,3736	79,0	1,3710	1,3746		
1,3500	1,3536	83,0	1,3705	1,3741	79,0	1,3710	1,3746		
1,3475	1,3511	84,0	1,3710	1,3746	79,0	1,3710	1,3746		
1,3465	1,3501	85,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3460	1,3496	86,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3440	1,3476	88,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3420	1,3456	89,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3395	1,3431	91,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3385	1,3421	93,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3370	1,3406	94,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3355	1,3391	96,0	1,3710	1,3746	79,0	1,3710	1,3746	1,3710	1,3746
1,3340	1,3376	97,0	1,3710	1,3746	80,0	1,3710	1,3746	1,3710	1,3746

Tabla Nº D6: Datos experimentales de la corrida Nº 6 del sistema Isopropanol-agua, para la torre de relleno.

Dato	S		Cauda	l del Reflujo		Ca	udal del Destila	ado	Relación
V. D. (ml)	179	V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
V. R. (ml)	527	3,50	26,32	0,1330	29	2,50	64,35	0,0389	3,4229
V. P.	44	2,50	20,54	0,1217	29	2,00	59,28	0,0337	3,6076
T. Amb.	27 °C	3,50	24,73	0,1415	29	2,20	62,40	0,0353	4,0143
P.A. (mmHg)	725,7	2,50	21,61	0,1157	29	2,30	63,76	0,0361	3,2070
			Q. R.T. =	0,1280			Q. Dest. =	0,0360	3,5629

 $\frac{7}{2}$

MEZCLA ISOPROPANOL-AGUA

Tabla № C7. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida № 1 del sistema isopropanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,474	0,063	2,430
0,309	0,052	3,893
0,294	0,049	4,078
0,287	0,047	4,163
0,247	0,038	4,785
0,212	0,031	5,520
0,156	0,021	7,385
0,127	0,016	8,979
0,107	0,013	10,595
0,084	0,009	13,349
0,074	0,008	15,090

Figura Nº C1. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 1 del sistema Isopropanol-agua, para la torre de relleno.

х	1/(y* - x)
0,086	2,340
0,078	3,179
0,076	3,215
0,070	3,344
0,066	3,432
0,062	3,544
0,053	3,889
0,045	4,272
0,040	4,647
0,034	5,142
0,024	6,583
0,017	8,399
0,014	9,661
0,008	14,579
	x 0,086 0,078 0,076 0,070 0,066 0,062 0,053 0,045 0,045 0,045 0,040 0,034 0,024 0,017 0,014 0,008

Tabla Nº C8. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 2 del sistema isopropanol-agua, para la torre de relleno.

Figura Nº C2. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 2 del sistema Isopropanol-agua, para la torre de relleno.

y [*]	x	1/(y* - x)
0,502	0,077	2,350
0,490	0,070	2,379
0,363	0,068	3,386
0,337	0,060	3,607
0,317	0,054	3,810
0,270	0,043	4,397
0,203	0,029	5,747
0,184	0,026	6,300
0,147	0,019	7,807
0,107	0,013	10,595
0,066	0,006	16,717
0,045	0,003	23,969

Tabla Nº C9. Datos para la construcción del gráfico	co 1/(y* - x) vs. x de la corrida Nº 3 del sistema
isopropanol-agua, para	a la torre de relleno.

Figura Nº C3. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 3 del sistema Isopropanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,488	0,069	2,386
0,472	0,062	2,438
0,344	0,062	3,544
0,302	0,051	3,980
0,279	0,045	4,272
0,262	0,041	4,521
0,246	0,038	4,802
0,212	0,031	5,508
0,157	0,021	7,332
0,128	0,016	8,938
0,097	0,011	11,607
0,055	0,005	19,897

Tabla Nº C10. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 4 del sistema isopropanol-agua, para la torre de relleno.

Figura Nº C4. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 4 del sistema Isopropanol-agua, para la torre de relleno.

y [*]	х	1/(y* - x)
0,499	0,075	2,357
0,369	0,070	3,339
0,362	0,068	3,391
0,343	0,062	3,550
0,330	0,058	3,674
0,317	0,054	3,810
0,279	0,045	4,272
0,247	0,038	4,785
0,221	0,033	5,305
0,193	0,027	6,015
0,166	0,022	6,967
0,136	0,017	8,399
0,118	0,014	9,661

Tabla Nº C11. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 5 del sistema isopropanol-agua, para la torre de relleno.

Figura Nº C5. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 5 del sistema Isopropanol-agua, para la torre de relleno.

y [*]	x	1/(y* - x)
0,507	0,081	2,342
0,375	0,072	3,299
0,369	0,070	3,339
0,337	0,060	3,607
0,323	0,056	3,747
0,317	0,054	3,810
0,286	0,047	4,174
0,255	0,040	4,647
0,212	0,031	5,508
0,193	0,027	6,015
0,166	0,022	6,944
0,136	0,017	8,399
0,108	0,013	10,534

Tabla Nº C12. Datos para la construcción del gráfico 1/(y* - x) vs. x de la corrida Nº 6 del sistema isopropanol-agua, para la torre de relleno.

Figura Nº C6. Gráfico de 1/(y* - x) vs. x para la resolución de la ecuación de Lord Rayleigh de la corrida Nº 6 del sistema Isopropanol-agua, para la torre de relleno.

APÉNDICE E

TABLA Nº E1. Datos experimentales de la corrida Nº 1 del sistema Etanol-Agua.(T.P.)							
η_D^T T. E.: T. D.: V. A.: (ml) T. Amb.	1,3450 83°C 80 °C 10000 28 °C		η_D^{20} V. D. (ml) V. R. (ml) V. P. P.A.(mmHg)	1,3474 1837 7200 963 727,7		R	$\approx \frac{1}{1}$
	CALDERIN	J	DI	ESTILADO		Т	OPE
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (⁰C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3405	1,3441	80,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3375	1,3411	84,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3350	1,3386	88,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3325	1,3361	93,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3315	1,3351	96,0	1,3580	1,3612	79,0	1,3580	1,3612
	Caudal	del Reflujo			Caudal en	el Destilad	0
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
20,00	32,56	0,6143	5	16,00	26,99	0,5928	1,0362
20,00	31,97	0,6256	6	15,00	24,56	0,6107	1,0243
	Q. R. =	0,6199			Q. D. =	0,6018	1,0302

TABLA Nº E2. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº 1 del sistema Etanol-Agua.(T.P.)

Mezcla	Alimentación	Residuo	Destilado
N⁰ moles	468,4123	384,4195	39, 9283
Composición	0,1000	0,0200	0,7400

Figura Nº E1. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 1 de la mezcla Etanol-agua.

η_D^T T. E.: T. D.: V. A.: (ml) T. Amb.	1,3465 82°C 80 °C 10000 28 °C	η_D^{20} V. D. (ml) V. R. (ml) V. P. P.A.(mmHg)	1,3489 1967 6991 1042 727,7	$R \approx \frac{7}{4}$	
	CALDERIN	D	ESTILADO	TOPE	
т	20	Т	20	Т	-

TABLA Nº F3 Datos ex	perimentales de la corrida	Nº 2 del sistema	Etanol-Aqua (T P)
	pormornales de la cornad		

$n_{\rm p}^{\rm T}$	$n_{\rm p}^{20}$		$n_{\rm p}^{\rm T}$	$n_{\rm P}^{20}$		$n_{\rm p}^{\rm T}$	$n_{\rm p}^{20}$
·1D	· 1 D	T (50)	•1D	-7D	T (*C)	• 1 D	.10
1,3430	1,3466	83,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3415	1,3451	84,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3400	1,3436	86,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3375	1,3411	88,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3350	1,3386	90,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3340	1,3376	93,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3330	1,3366	96,0	1,3580	1,3612	79,0	1,3580	1,3612
	Caudal	del Reflujo			Caudal en el	Destilado	
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
30,00	37,15	0,8075	9	14,50	30,53	0,4749	1,7003
30,00	36,76	0,8161	10	15,00	31,77	0,4721	1,7285
	Q. R. =	0,8118			Q. D. =	0,4735	1,7144

TABLA Nº E4. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº2 del sistema Etanol-Agua.(T.P.)

	Mezcla Alimenta		Residuo	Destilado
-	Nº moles	454,1849	373,2607	42,7540
	Composición	0,1200	0,0200	0,7400

Figura Nº E2. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 2 de la mezcla Etanol-agua.

30,00

29,04

Q. R. =

1,0331

1,0295

η_D^T T. E.: T. D.: V. A.: (ml) T. Amb.	1,3495 82°C 80 °C 10000 28 °C		η_D^{20} V. D. (ml) V. R. (ml) V. P. P.A.(mmHg)	1,3523 2196 7014 790 727,7		R	$\approx \frac{4}{1}$
	CALDERIN			DESTILADO		ТО	PE
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3440	1,3476	82,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3425	1,3461	84,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3405	1,3441	86,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3385	1,3421	88,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3360	1,3396	91,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3335	1,3371	93,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3325	1,3361	96,0	1,3580	1,3612	79,0	1,3580	1,3612
	Caudal	del Reflujo		Cau	idal en el De	estilado	
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
40,00	38,99	1,0259	16	8,50	33,33	0,2550	4,0228

TABLA Nº E5. Datos experimentales de la corrida Nº 3 del sistema Etanol-Agua.(T.P.)

TABLA Nº E6. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº3 del sistema Etanol-Agua.(T.P.)

18

10,00

37,07

Q. D. =

0,2698

0,2624

3,8295

Mezcla	Alimentación	Residuo	Destilado
Nº moles	434,1908	374,4887	47,7314
Composición	0,1500	0,0200	0,7400

Figura Nº E3. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 3 de la mezcla Etanol-agua.

$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	1,3480	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3508	
T. E.:	81ºC	V. D. (ml)	2175	8
T. D.:	80 °C	V. R. (ml)	6789	$R \approx \frac{0}{2}$
V. A.: (ml)	10000	V. P.	1036	1
T. Amb.	28 °C	P.A.(mmHg)	727,7	

TABLA Nº E7. Datos experimentales de la corrida Nº 4 del sistema Etanol-Agua.(T.P.)

CALDERIN			D	ESTILADC)	TOP	Έ
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (ºC)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (⁰C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3455	1,3491	82,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3440	1,3476	84,0	1,3580	1,3612	80,0	1,3580	1,3612
1,3425	1,3461	86,0	1,3580	1,3612	81,0	1,3580	1,3612
1,3410	1,3446	87,0	1,3580	1,3612	82,0	1,3580	1,3612
1,3400	1,3436	90,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3385	1,3421	91,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3355	1,3391	93,0	1,3580	1,3612	79,0	1,3580	1,3612
1,3335	1,3371	96,0	1,3580	1,3608	79,0	1,3580	1,3612
Caudal del Reflujo					Caudal ei	n el Destilado	
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
32,50	26,94	1,2064	17	8,50	55,63	0,1528	7,8954
35,00	27,72	1,2626	19	8,00	50,74	0,1577	8,0082
	Q. R. =	1,2345			Q. D. =	0,1552	7,9518

TABLA Nº E8. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº 4 del sistema Etanol-Agua.(T.P.)

Mezcla	Alimentación	Residuo	Destilado
Nº moles	447,3476	356,3379	47,2750
Composición	0,1300	0,0300	0,7400

Figura Nº E4. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 4 de la mezcla Etanol-agua.

APÉNDICE F

TABLA Nº F1. Datos experimentales de la corrida Nº 1 del sistema Isopropanol-Agua.(T.P.)

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3550	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3574	
T. E.:	81ºC	V. D. (ml)	1980	3
T. D.:	80 °C	V. R. (ml)	6988	$R \approx \frac{3}{2}$
V. A.: (ml)	10000	V. P.	1032	4
T. Amb.	27 °C	P.A.(mmHg)	727,4	

CALDERIN		DE	STILADO		TO	PE	
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3515	1,3559	81,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3500	1,3544	85,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3475	1,3519	88,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3465	1,3509	89,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3420	1,3464	90,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3415	1,3459	92,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3390	1,3434	93,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3365	1,3409	94,0	1,3735	1,3745	80,0	1,3735	1,3745
1,3345	1,3389	96,0	1,3735	1,3745	80,0	1,3735	1,3745
Caudal del Reflujo					Caudal	en el Destilado)
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
10,00	16,68	0,5995	7	21,00	25,48	0,8242	0,7274
20,00	31,98	0,6254	7	20,00	24,75	0,8081	0,7739
	Q. R. =	0,6125			Q. D. =	0,8161	0,7507

TABLA Nº F2. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº1 del sistema Isopropanol-Agua.(T.P.)

Mezcla	Alimentación	Residuo	Destilado
Nº moles	428,0199	367,5527	42,4392
Composición	0,1120	0,0200	0,5500

Figura Nº F1. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 1 de la mezcla Isopropanol-agua.

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3530	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3558	
T. E.:	81ºC	V. D. (ml)	1963	6
T. D.:	80 °C	V. R. (ml)	6994	$R \approx \frac{\circ}{-}$
V. A.: (ml)	10000	V. P.	1043	5
T. Amb.	27 °C	P.A.(mmHg)	726,7	

C/	ALDERIN		DE	STILADO		TOF	Έ
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (ºC)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3510	1,3550	81,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3495	1,3535	83,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3480	1,3520	85,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3470	1,3510	87,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3430	1,3470	89,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3415	1,3455	91,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3385	1,3425	92,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3370	1,3410	93,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3350	1,3390	94,0	1,3735	1,3745	80,0	1,3735	1,3749
1,3340	1,3380	95,0	1,3735	1,3745	80,0	1,3735	1,3749
	Caudal del	Reflujo			Caudal	en el Destilado	
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
20,00	26,27	0,7613	10	14,50	22,36	0,6485	1,1740

TABLA Nº F3. Datos experimentales de la corrida Nº 2 del sistema Isopropanol-Agua.(T.P.)

TABLA Nº F4. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº 2 del sistema Isopropanol-Agua.(T.P.)

15,00

22,90

Q. D. =

0,6550

0,6518

1,1780

1,1760

11

20,00

25,92

Q. R. =

0,7716

Mezcla	Alimentación	Residuo	Destilado
Nº moles	438,8617	367,8683	42,0748
Composición	0,1000	0,0200	0,5500

Figura Nº F2. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 2 de la mezcla Isopropanol-agua.

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3545	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3577	
T. E.:	81ºC	V. D. (ml)	1945	7
T. D.:	80 °C	V. R. (ml)	7097	$R \approx -$
V. A.: (ml)	10000	V. P.	958	4
T. Amb.	26 °C	P.A.(mmHg)	728,3	

CALDERIN		DESTILADO		TOPE			
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3510	1,3546	82,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3500	1,3536	84,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3480	1,3516	87,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3455	1,3491	88,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3400	1,3436	90,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3395	1,3431	92,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3355	1,3391	94,0	1,3735	1,3749	80,0	1,3735	1,3749
1,3340	1,3376	95,0	1,3735	1,3749	80,0	1,3735	1,3749
	Caudal del	Reflujo			Caudal	en el Destilado	
V (ml)	t (s)	Q (ml/s)	Abert. Rot.	V (ml)	t (s)	Q (ml/s)	R
20,00	22,54	0,8873	14	13,00	25,74	0,5051	1,7569
20,00	23,07	0,8669	14	20,00	39,27	0,5093	1,7022

TABLA Nº F5. Datos experimentales de la corrida Nº 3 del sistema Isopropanol-Agua.(T.P.)

TABLA Nº F6. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº 3 del sistema Isopropanol-Agua.(T.P.)

Q. D. =

0,5072

1,7295

Q. R. =

Mezcla	Alimentación	Residuo	Destilado
Nº moles	425,3843	373,2858	40,1683
Composición	0,1150	0,0200	0,5800

Figura Nº F3. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 3 de la mezcla Isopropanol-agua.

1,3415

1,3400

1,3375

1,3360

1,3345

V (ml)

30,00

30,00

1,3455

1,3440

1,3415

1,3400

1,3385

t (s)

28,52

28,96

Q. R. =

Caudal del Reflujo

91,0

93,0

94,0

95,0

96,0

Q (ml/s)

1,0519

1,0359

1,0439

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3575	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3615	
T. E.:	81ºC	V. D. (ml)	1879	7
T. D.:	80 °C	V. R. (ml)	7052	$R \approx \frac{1}{2}$
V. A.: (ml)	10000	V. P.	1069	2
T. Amb.	27 °C	P.A.(mmHg)	727,4	

1,3735

1,3735

1,3735

1,3735

1,3735

Abert. Rot.

19

19

T. Amb.	27 °C		P.A.(mmHg)	727,4			
CA	LDERIN		DE	STILADO		TO	PE
$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$
1,3515	1,3555	81,0	1,3735	1,3749	80,0	1,3735	1,3745
1,3490	1,3530	84,0	1,3735	1,3749	80,0	1,3735	1,3745
1,3475	1,3515	86,0	1,3735	1,3749	80,0	1,3735	1,3745
1,3445	1,3485	88,0	1,3735	1,3749	80,0	1,3735	1,3745

1,3749

1,3749

1,3749

1,3749

1,3749

V (ml)

7,50

12,00

81,0

82,0

83,0

80,0

80,0

t (s)

26,67

41,74

Q. D. =

1,3735

1,3735

1,3735

1,3735

1,3735

Q (ml/s)

0,2812

0,2875

0,2844

Caudal en el Destilado

TABLA Nº F7. Datos experimentales de la corrida Nº 4 del sistema Isopropanol-Agua.(T.P.)

TABLA Nº F8. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida N
4 del sistema Isopropanol-Aqua.(T.P.)

Mezcla	Alimentación	Residuo	Destilado
Nº moles	392,8339	370,9190	38,8009
Composición	0,1550	0,0200	0,5800

1,3745

1,3745

1,3745

1,3745

1,3745

Abert. Rot.

3,7405

3,6032

Figura Nº F4. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 4 de la mezcla Isopropanol-agua.

$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	1,3565	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	1,3605	
T. E.:	81ºC	V. D. (ml)	1900	11
T. D.:	80 °C	V. R. (ml)	6957	$R \approx \frac{11}{1}$
V. A.: (ml)	10000	V. P.	1143	3
T. Amb.	27 °C	P.A.(mmHg)	727,4	

TABLA Nº F9 Datos experimentales de la corrida Nº 5 del sistema Isopropanol-Agua.(T.P.)

C/	ALDERIN		DE	STILADO		TOPE		
$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle T}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	T (°C)	$\eta^{\scriptscriptstyle T}_{\scriptscriptstyle D}$	$\eta_{\scriptscriptstyle D}^{\scriptscriptstyle 20}$	
1,3515	1,3555	81,0	1,3735	1,3749	80,0	1,3735	1,3745	
1,3500	1,3540	84,0	1,3735	1,3749	80,0	1,3735	1,3745	
1,3485	1,3525	86,0	1,3735	1,3749	80,0	1,3735	1,3745	
1,3450	1,3490	88,0	1,3735	1,3749	80,0	1,3735	1,3745	
1,3415	1,3455	91,0	1,3735	1,3749	81,0	1,3735	1,3745	
1,3400	1,3440	93,0	1,3735	1,3749	82,0	1,3735	1,3745	
1,3380	1,3420	94,0	1,3735	1,3749	83,0	1,3735	1,3745	
1,3360	1,3400	95,0	1,3735	1,3749	80,0	1,3735	1,3745	
Caudal del Reflujo					Caudal	en el Destilado)	
V (ml)	t (s)	Q (ml/s)	Abert.Rot.	V (ml)	t (s)	Q (ml/s)	R	
20,00	20,04	0,9980	22	10,00	36,42	0,2746	3,6347	
20,00	19,89	1,0055	22	10,00	37,65	0,2656	3,7858	

Q. D. =

0,2701

3,7103

TABLA Nº F10. Nº de moles y composición de: la alimentación, residuo y destilado de la corrida Nº5 del sistema Isopropanol-Agua.(T.P.)

1,0018

Q. R. =

Mezcla	Alimentación	Residuo	Destilado
Nº moles	404,5032	365,9222	39,2345
Composición	0,1400	0,0200	0,5800

Figura Nº F5. Construcción del Nº de platos por el método gráfico McCabe Thiele en diagrama XY de la corrida Nº 5 de la mezcla Isopropanol-agua.

APÉNDICE G

MANUAL DE OPERACIÓN

TORRE DE RELLENO

DATOS TÉCNICOS

Calderín

Manta de Calentamiento: 500 W, 110 V. Capacidad del balón: 1000 ml. Indicador de temperatura: 0-250º C. Regulador: 0 – 10 (De menor a mayor intensidad de calentamiento)

Columna de Relleno

Material: Vidrio PYREX Altura de la columna: 90 cm. Diámetro interno de la columna: 21 mm. Material de los anillos: Vidrio PYREX Altura del relleno: 73 cm. Diámetro interno de los anillos de relleno: 3 mm.

Condensador Principal

Tipo: Condensador de bola Material: Vidrio PYREX Disposición en la columna: Vertical

Condensador Secundario

Tipo: Condensador recto Material: Vidrio PYREX Disposición en la columna: Inclinado

CONDICIONES DE TRABAJO

Sistemas sugeridos

Etanol-agua. Isopropanol-agua.

Otros sistemas sugeridos (Perry 1992)

1-propanol-agua. Ácido acético-agua. 1-butanol-agua.

Volumen del sistema a tratar:

Entre 500 ml y 750 ml

Condiciones de operación:

Reflujo	Alimentación (%)	Calentamiento (*)	Sistema
3/2	36 - 60	6 – 7	E – A
3/1	26 – 60	6 – 7	E – A
4/1	20 - 60	6 – 7	E – A
2/3	35 – 50	6 – 7	I – A
4/3	25 – 50	6 – 7	I – A
7/2	13 – 50	6 – 7	I – A

(*) Posición en el medidor de la manta de calentamiento.

- E A: Etanol-agua.
- I A: Isopropanol-agua.

Método operatorio:

- Verificar que todas las válvulas del sistema estén cerradas, para evitar fugas de la solución.
- Verificar que el calderín se encuentre limpio antes de añadir la solución de trabajo con la finalidad de no contaminarla con resto de otra solución que pueda permanecer en el caderín.
- 3. Abrir despacio la válvula (V8) con el fin de alimentar el agua de enfriamiento al sistema.

- Colocar la solución a estudiar (Etanol-agua o Isopropanol-agua) en el calderín con la ayuda de un embudo usando la boca de alimentación (puede usarse como boca de alimentación los puntos donde se ubican el IT₁ o la TM₁ ().
- 5. Encender la manta de calentamiento.
- Ubicar el potenciómetro o reóstato en la posición 5, aumentando de 1 en 1 cada 5 min hasta llegar a 8 o hasta que la temperatura del calderín esté en aproximadamente 80°C.
- 7. Abrir completamente la válvula del rotámetro.
- Colocar la válvula de tres vías VT2 en posición que permita la recirculación total del fluido, es decir, en sentido hacia el equipo, (Reflujo total).

Operación a reflujo total:

- 9. Medir las temperaturas en el tope y en el fondo de la columna.
- 10. Tomar las muestras del líquido en el calderín, fondo y tope.
- 11. Medir los índices de refracción a las muestras tomadas.
- 12. Repetir los pasos anteriores hasta alcanzar la estabilización del sistema.
- 13. Calibrar el rotámetro tomando medidas de volúmenes en el tiempo.

Operación a reflujo de trabajo:

- 14. Fijar la abertura del rotámetro que corresponda a la relación de Reflujo de trabajo.
- 15. Abrir las válvulas V2, V4, V5 y V6.
- 16. Medir el índice de refracción del destilado recolectado en fracciones de 15 a 20 ml y al destilado acumulado.
- 17. Tomar la lectura de temperatura en cada fracción.
- 18. Repetir los pasos 9, 10, 11 y 16 hasta un valor de x_w o volumen de destilado previamente establecido.

Parada:

- 19. Colocar el dial del potenciómetro en 0 y el interruptor en OFF
- 20. Apagar la manta.
- 21. Cerrar las válvulas del sistema como medida de seguridad.
- 22. Recolectar la solución rectificada en el recipiente indicado.
- 23. Medir la presión y la temperatura ambiente.
- 24. Esperar que enfríe el residuo del balón y descartar.

Figura G1. Diagrama de la torre de Relleno

MANUAL DE OPERACIÓN

TORRE DE PLATOS

DATOS TÉCNICOS

Calderín

Resistencia de Inmersión: 1500 W, 120 V. Capacidad del calderín: 15000 ml.

Columna de Platos

Material: Vidrio PYREX Altura de la columna: 150 cm. Diámetro interno de la columna: 10 cm. Altura por sección de la columna: 20 cm. Material de las secciones: Vidrio PYREX

Condensador

Tipo: Condensador en espiral multiple Material: Vidrio PYREX Disposición en la columna: Vertical

CONDICIONES DE TRABAJO

Sistemas sugeridos

Etanol-agua.

Isopropanol-agua.

Otros sistemas sugeridos (Perry 1992)

1-propanol-agua.

Ácido acético-agua.

1-butanol-agua.

Volumen del sistema a tratar: 10.000 ml.

Condiciones de operación:

Reflujo	Alimentación (%)	Calentamiento	Sistema
4/1	20 – 70	(*)	E – A
8/1	10 – 70	(*)	E – A
6/5	28 – 50	(*)	I – A
7/4	25 – 50	(*)	I – A
7/2	15 – 50	(*)	I – A
11/3	13 – 50	(*)	I – A

(*) Para poder regular el calentamiento debe incorporase un reóstato o un potenciómetro.

E – A: Etanol-agua.

I – A: Isopropanol-agua.

Método operatorio:

- Verificar que todas las válvulas del sistema estén cerradas, para evitar fugas de la solución.
- Verificar que el calderín se encuentre limpio antes de añadir la solución de trabajo con la finalidad de no contaminarla con resto de otra solución que pueda permanecer en el caderín.
- Abrir despacio la válvula (V7) con el fin de alimentar el agua de enfriamiento al sistema.
- 4. Colocar la solución a estudiar (Etanol-agua o Isopropanol-agua) en el calderín con la ayuda de un embudo usando la boca de alimentación.
- 5. Conectar la resistencia a la toma de corriente.
- 6. Abrir completamente la válvula del rotámetro.
- 7. Abrir la válvula V2 de manera que permita la recirculación total del fluido, es decir, en sentido hacia el equipo, (Reflujo total).

Operación a reflujo total:

- 8. Medir las temperaturas en el tope y en el calderín de la columna.
- 9. Tomar las muestras del líquido en el calderín y el tope.
- 10. Medir los índices de refracción a las muestras tomadas.
- 11. Repetir los pasos anteriores hasta alcanzar la estabilización del sistema.

Operación a reflujo de trabajo:

- 12. Fijar la abertura del rotámetro que corresponda a la relación de Reflujo de trabajo, con la válvula V4.
- 13. Medir el índice de refracción del destilado recolectado en fracciones de 20 a30 ml y al destilado acumulado.
- 14. Tomar la lectura de temperatura en cada fracción.
- 15. Repetir los pasos 9, 10, 11 y 13 hasta un valor de x_w o volumen de destilado previamente establecido.

Parada:

- 16. Desconectar la resistencia.
- 17. Cerrar las válvulas del sistema como medida de seguridad.
- 18. Recolectar la solución rectificada en el recipiente indicado.
- 19. Medir la presión y la temperatura ambiente.
- 20. Esperar que enfríe el residuo del calderín y descartar.

Figura G2. Diagrama de la Torre de Platos.

APÉNDICE H

APÉNDICE H

PARTES DE LA TORRE DE RELLENO

a) Balón de tres bocas	b)T de vidrio con depósito en el centro	c)T de vidrio
d) Tuberías de vidrio en forma de H	 e) Matraz para recolección del condensado 	f) Cabezal con toma de muestra
g) Recolector de condensado	h) Tuberías de vidrio en	i) Tuberías de vidrio en forma de T con válvula lateral

Figura H1) Fotos de cada una de las partes que conforma la torre de relleno.

Figura H2) Esquema de la rejilla donde están sujetas cada una de las partes que conforma la torre de relleno.

Figura H3) Esquema del montaje de la torre de relleno.

Leyenda

- 1 Manta de Calentamiento.
- **2** Balón de tres bocas.
- 3 Cabezal con toma de muestra.
- 4 Relleno.
- 5 Columna de relleno.
- 6 Cabezal de destilación.
- 7 Matraz para recolección del condensado.
- 8 Condensador de Bola.
- 9 Tubería de vidrio en forma de H.
- **10** Condensador recto.
- 11 T vidrio.
- **12** Tubería en L con válvula de paso.
- **13** T de vidrio con válvula lateral.
- 14 T de vidrio con depósito en el centro.
- 15 Válvula de tres vías.
- 16 Rotámetro.
- 17 Recolector del condensado con tres válvulas.
- **18** Embudo de decantación.
- **19** Conexión o manguera.
- **20** Punto para toma de muestra (Jeringa).
- 21 Entrada de agua al condensador.
- 22 Salida de agua del condensador.

Figura H4) El refractómetro es un de los equipos indispensable para determinar la composición de la mezcla en estudio.

Figura H5) Vista de la torre de relleno una vez instalada y previo a su funcionamiento.

Figura H6) Vista final de la torre de relleno una vez instalada.

PARTES DE LA TORRE DE PLATOS

 a) Sección de columna (La torre está constituida de 5 secciones) 	b) Condensador en espiral.	c) Cabezal de destilación con salida para la recolección del condensado.
d) Cabezal de retorno con punto para indicador de	e) Calderín	f) Rotámetro
Abrazadera	Recolector del condensado.	Plato

Figura H7) Fotos de cada una de las partes que conforma la torre de platos.

LEYENDA

- 1 Calderín
- 2 Sección de vidrio
- 3 Abrazadera
- 4 Punto para Indicador de Temperatura
- 5 Cabezal de retorno con punto para IT.
- 6 Cabezal de destilación cor retorno.
- 7 Condensador es espiral.
- 8 Válvula de paso.
- 9 Toma de muestra.
- **10** Recolector del condensado.

- 11 Mangueras.
- 12 Rotámetro.
- **13** Toma de muestra en el calderín.
- 14 Termómetro bimetálico.
- 15 Resistencia de inmersión.
- 16 Indicador de nivel.
- 17 Alimentación.
- **18** Entrada de agua al condensador.
- **19** Salida de agua del condensador.

Figura H8) Esquema del montaje de la torre de platos.

Figura H9) Vista de la torre de platos una vez instalada.

Figura H10) Vista de planta del laboratorio para la ubicación de las Torres de rectificación

Leyenda

- Toma de agua
- Toma de corriente
- Desagüe
- Puerta
 - Lavadero
- Torre de relleno
 - Torre de platos

ANEXOS

DATOS DE LOS SISTEMAS

Estado de agregación	Líquido
Apariencia	Incoloro
Fórmula	H ₂ O
Peso Molecular (g/mol)	18,016
Densidad (g/ml)	Ver Tabla Nº 1
Punto de Ebullición (ºC)	100
Índice de refracción (η_D^{20})	1,3330
Pureza (%)	100

Tabla Nº AN1. Propiedades físicas del Agua. (Perry,1992)

Tabla Nº AN2.	Propiedades	físicas de	el Etanol.	(Perry,199	2)
---------------	-------------	------------	------------	------------	----

Estado de agregación	Líquido
Apariencia	Incoloro
Fórmula	CH ₃ CH ₂ OH
Peso Molecular (g/mol)	46,070
Densidad (g/ml)	0,790-0,791
Punto de Ebullición (ºC)	78-79
Índice de refracción (η_D^{20})	1,3614-1,3618
Pureza (%)	99,80

Tabla Nº AN3. Propiedades físicas del Isopropanol. (Perry,1992)

Estado de agregación	Líquido
Apariencia	Incoloro
Fórmula	CH ₃ CHOHCH ₃
Peso Molecular (g/mol)	60,090
Densidad (g/ml)	0,785
Punto de Ebullición (°C)	81-83
Índice de refracción (η_D^{20})	1,3756
Pureza (%)	99,80

	ρ, kg/m³									
t, °C	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	999,839	999.846	999.852	999.859	999.865	999.871	999.877	999,882	999,888	999.893
1	999,898	999,903	999,908	999.913	999.917	999.921	999.925	999,929	999,933	999.936
2	999.940	999.943	999.946	999.949	999.952	999.954	999.956	999,959	999,961	999.962
3	999.964	999.966	999.967	999.968	999,969	999.970	999.971	999.971	999.972	999.972
4	999.972	999.972	999.972	999.971	999.971	999.970	999.969	999.968	999.967	999.965
5	999.964	999.962	999,960	999.958	999,956	999.954	999.951	999,949	999,946	999.943
6	999,940	999,937	999,934	999,930	999.926	999.923	999,919	999,915	999,910	999,906
7	999.901	999.897	999.892	999.887	999.882	999.877	999.871	999.866	999.860	999.854
ŝ	000.849	000 842	999 836	000.820	000.823	999.816	000,500	999,802	999 795	000.788
9	999.781	999.773	999.765	999.758	999.750	999.742	999.734	999.725	999.717	999.708
10	000 600	999.691	000 692	000 672	000.662	000.654	000 644	000 625	000.625	900.615
10	000.605	000 505	000 594	000 574	000 562	000 552	000 542	000 521	000 520	999.010
10	999.000	868,380	899,064	889,074	889,003	989,003	999,042	999,031	999,520	999.309
12	999.497	950.480	999.474	999.402	969.451	999.439	999.420	999.414	999.402	999.389
13	999.377	999.364	999.351	999.338	999.325	999.312	999.299	999.285	999.272	999.258
14	999.244	999.230	999.216	999.202	999.188	999.173	999.159	999.144	999.129	999.114
15	999.099	999.084	999.069	999.054	999.038	999.022	999.007	998.991	998.975	998.958
16	998,943	998,926	998.910	999,894	998.877	998,860	998,843	998,826	998,809	998.792
17	998.775	998.757	998.740	998.722	998.704	996.686	998,668	998.650	998.632	995.614
18	998,595	998.577	998,558	998,539	998.520	998.502	998,482	998,463	998,444	998.425
19	998.405	998.385	998.366	998.346	998.326	998.306	998,286	998.265	998.245	998.224
	0001100	0001000	000000	000.010	000.000	000.000	000.000	000.000	000	
20	998.204	998.183	998.162	998.141	998.120	998.099	998.078	998.057	998.035	998.014
21	997.992	997.971	997.949	997.927	997.905	997.883	997.860	997.838	997.816	997.793
22	997.770	997.747	997.725	997.702	997.679	997.656	997.632	997.609	997.585	997.562
23	997.538	997.515	997.491	997.467	997.443	997.419	997,394	997,370	997.345	997.321
24	997.296	997.272	997.247	997.222	997.197	997.172	997.146	997.121	997.096	997.070
25	997.045	997.019	996,993	996.967	996.941	996.915	996,889	996,863	996,836	996.810
26	996,783	996,757	996,730	996,703	996.676	996,649	996,622	996,595	996,568	996,540
27	996.513	996,485	996,458	996,430	996.402	996.374	996,346	996,318	996,290	996.262
28	996.233	996.205	996.176	996.148	996.119	996.090	996.061	996.032	996.003	995.974
29	995.945	995.915	995.886	995.856	995.827	995.797	995.767	995.737	995.707	995.677
20	995 647	995.617	995 596	995 556	995 526	005.405	995 464	005 422	995 403	005 379
21	005 241	005 210	005 979	005.947	005 916	005 194	005 152	005 101	005 000	005.059
20	005.006	004.007	880.278	880.247	004.808	004.965	990,103	995.121	993,090	004 705
32	990.020	994.997 004.670	894.902	894.930	894.695	994,500	994,533	994,501	994.705	994.730 004.405
33	004.071	594.070	894.037	894.004	894,071	994,035	994,000	994.472	994,435	004.000
34	994.371	994.338	894.304	994.270	994.230	994.202	994.108	994.134	994.100	994.000
35	994.032	993,997	993.963	993.928	993,893	993.859	993,824	993,789	993.754	993.719
36	993.684	993.648	993.613	993.578	993.543	993.507	993.471	993.436	993.400	993.364
37	993.328	993.292	993.256	993.220	993.184	993.148	993.111	993.075	993.035	993.002
38	992,965	992,928	992.891	992.855	992.818	992.780	992.743	992.706	992,669	992.631
39	992.594	992.557	992,519	992.481	992.444	992.406	992,368	992,330	992.292	992.254
40	992.215	992.177	992.139	992.100	992.062	992.023	991.985	991.946	991.907	992.868
41	991.830	991.791	991.751	991.712	992.673	991.634	991,594	991,555	991,515	991.476
42	991.436	991.396	991.357	991.317	991.277	991.237	991.197	991.157	991.116	991.076
43	991.036	990.995	990.955	990.914	990.873	990.833	990.792	990.751	990.710	990.669
44	990.628	990.587	990.546	990.504	990.463	990.421	990,380	990,338	990.297	990.255
45	990.213	990.171	990.129	990.087	990.045	990.003	989.961	989.919	989.876	989.834
46	989.792	989.749	989.706	989.664	989.621	989.578	989,535	989.492	989.449	989.406
47	989.363	989.320	989.276	989.233	989.190	989.146	989.103	989.059	989.015	988.971
48	955,928	988.884	968.840	968.796	988.752	988.707	988.663	988.619	988.574	988.530
49	988.485	988.441	988.396	988.352	988.307	988.262	988.217	988.172	988.127	988.082

Tabla Nº AN4. Densidad del agua de 0 a 100º C en (kg/m³) (Perry,1992)

Figura Nº AN1. Diagrama de Temperatura vs. Composición del sistema binario Etanol-Agua. (Perry,1992)

Figura Nº AN2. Diagrama de equilibrio XY del sistema binario Etanol-Agua. (Perry,1992)

Figura Nº AN3. Diagrama de Temperatura vs. Composición del sistema binario Isopropanol-Agua. (Perry,1992)

Figura Nº AN4. Diagrama de equilibrio XY del sistema binario Isopropanol-Agua. (Perry,1992)