Comparación de Dos Muestras - CA DSA & CE DSA

Muestra 1: CA DSA Muestra 2: CE DSA

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,47 a 4,73

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA DSA	CE DSA
Recuento	6	6
Promedio	2,5	2,24667
Desviación Estándar	2,04939	1,91714
Coeficiente de Variación	81,9756%	85,3327%
Mínimo	0,5	0,47
Máximo	5,0	4,73
Rango	4,5	4,26
Sesgo Estandarizado	0,522804	0,700868
Curtosis Estandarizada	-0,9375	-0,927416
Suma de Cuadrados	58,5	48,6622

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA DSA: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE DSA: 2,24667 +/- 2,01192 [0,234746, 4,25859] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,253333 +/- 2,55273 [-2,2994, 2,80606]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,221121 valor-P = 0,829448 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,2994 hasta 2,80606. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

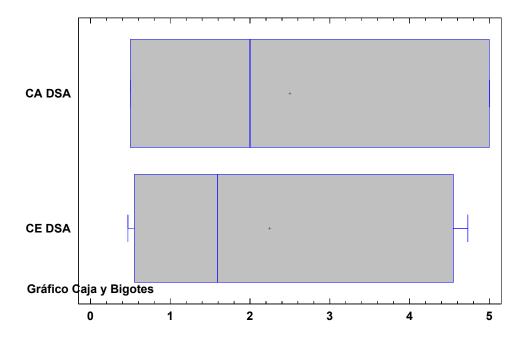
	CA DSA	CE DSA
Desviación Estándar	2,04939	1,91714
Varianza	4,2	3,67543
Gl	5	5

Razón de Varianzas= 1,14272

Intervalos de confianza del 95,0%

Desviación Estándar de CA DSA: [1,27925, 5,02636] Desviación Estándar de CE DSA: [1,19669, 4,70201] Razones de Varianzas: [0,159902, 8,16639]

Prueba-F para comparar Desviaciones Estándar


Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,14272 valor-P = 0,887193

No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,159902 hasta 8,16639. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Comparación de Dos Muestras - CA DSA & CE DSA

Muestra 1: CA DSA Muestra 2: CE DSA

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,43 a 4,37

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA DSA	CE DSA
Recuento	6	6
Promedio	2,5	2,18667
Desviación Estándar	2,04939	1,74451
Coeficiente de Variación	81,9756%	79,7793%
Mínimo	0,5	0,43
Máximo	5,0	4,37
Rango	4,5	3,94
Sesgo Estandarizado	0,522804	0,464789
Curtosis Estandarizada	-0,9375	-0,930623
Suma de Cuadrados	58,5	43,9056

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA DSA: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE DSA: 2,18667 +/- 1,83075 [0,355913, 4,01742] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,313333 +/- 2,44814 [-2,13481, 2,76147]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,285177 valor-P = 0,781328 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,13481 hasta 2,76147. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA DSA	CE DSA
Desviación Estándar	2,04939	1,74451
Varianza	4,2	3,04331
Gl	5	5

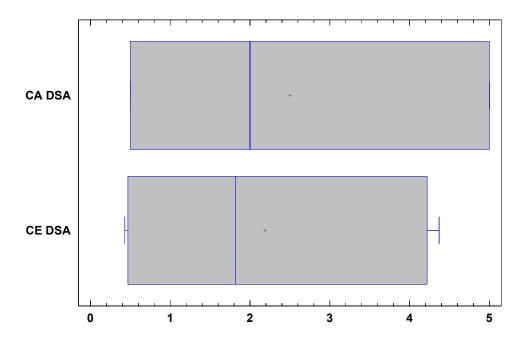
Razón de Varianzas= 1,38008

Intervalos de confianza del 95,0%

Desviación Estándar de CA DSA: [1,27925, 5,02636] Desviación Estándar de CE DSA: [1,08894, 4,2786] Razones de Varianzas: [0,193115, 9,86261]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,38008 valor-P = 0,73236


No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,193115 hasta 9,86261. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Gráfico Caja y Bigotes

<u>Comparación de Dos Muestras - CA DSC & CE DSC</u> Muestra 1: CA DSC

Muestra 2: CE DSC

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,47 a 4,66

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA DSC	CE DSC
Recuento	6	6
Promedio	2,5	2,28833
Desviación Estándar	2,04939	1,86815
Coeficiente de Variación	81,9756%	81,6379%
Mínimo	0,5	0,47
Máximo	5,0	4,66
Rango	4,5	4,19
Sesgo Estandarizado	0,522804	0,554301
Curtosis Estandarizada	-0,9375	-0,929223
Suma de Cuadrados	58,5	48,8687

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA DSC: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE DSC: 2,28833 +/- 1,96051 [0,327827, 4,24884] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,211667 +/- 2,52249 [-2,31083, 2,73416]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,186967 valor-P = 0,855425 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,31083 hasta 2,73416. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA DSC	CE DSC
Desviación Estándar	2,04939	1,86815
Varianza	4,2	3,48998
Gl	5	5

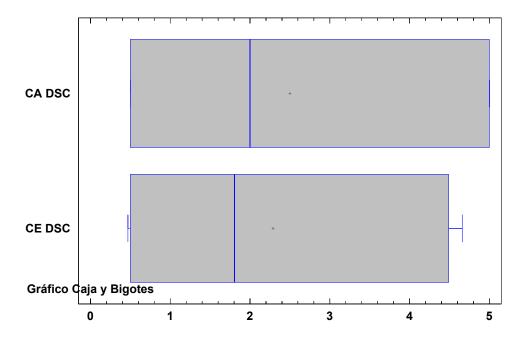
Razón de Varianzas= 1,20345

Intervalos de confianza del 95,0%

Desviación Estándar de CA DSC: [1,27925, 5,02636] Desviación Estándar de CE DSC: [1,16611, 4,58185]

Razones de Varianzas: [0,168399, 8,60033]

Prueba-F para comparar Desviaciones Estándar


Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,20345 valor-P = 0,843941

No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,168399 hasta 8,60033. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

<u>Comparación de Dos Muestras - CA DSC & CE DSC</u> Muestra 1: CA DSC

Muestra 2: CE DSC

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,44 a 4,41

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA DSC	CE DSC
Recuento	6	6
Promedio	2,5	2,18667
Desviación Estándar	2,04939	1,77001
Coeficiente de Variación	81,9756%	80,9457%
Mínimo	0,5	0,44
Máximo	5,0	4,41
Rango	4,5	3,97
Sesgo Estandarizado	0,522804	0,509024
Curtosis Estandarizada	-0,9375	-0,930875
Suma de Cuadrados	58,5	44,3538

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA DSC: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE DSC: 2,18667 +/- 1,85752 [0,329147, 4,04419] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,313333 +/- 2,46324 [-2,14991, 2,77657]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,283428 valor-P = 0,78263 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,14991 hasta 2,77657. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA DSC	CE DSC
Desviación Estándar	2,04939	1,77001
Varianza	4,2	3,13295
Gl	5	5

Razón de Varianzas= 1,34059

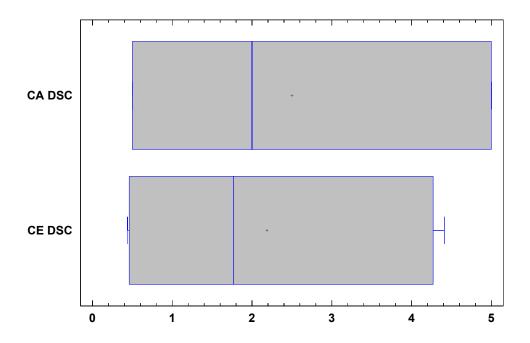
Intervalos de confianza del 95,0%

Desviación Estándar de CA DSC: [1,27925, 5,02636] Desviación Estándar de CE DSC: [1,10486, 4,34116]

Razones de Varianzas: [0,187589, 9,58042]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,34059 valor-P = 0,755591


No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,187589 hasta 9,58042. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Gráfico Caja y Bigotes

Comparación de Dos Muestras - CA ISA & CE ISA Muestra 1: CA ISA

Muestra 2: CE ISA

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,48 a 4,92

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA ISA	CE ISA
Recuento	6	6
Promedio	2,5	2,345
Desviación Estándar	2,04939	1,93227
Coeficiente de Variación	81,9756%	82,3996%
Mínimo	0,5	0,48
Máximo	5,0	4,92
Rango	4,5	4,44
Sesgo Estandarizado	0,522804	0,613262
Curtosis Estandarizada	-0,9375	-0,889897
Suma de Cuadrados	58,5	51,6625

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA ISA: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE ISA: 2,345 +/- 2,0278 [0,317201, 4,3728] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,155 +/- 2,56215 [-2,40715, 2,71715]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,134794 valor-P = 0,895449 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,40715 hasta 2,71715. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA ISA	CE ISA
Desviación Estándar	2,04939	1,93227
Varianza	4,2	3,73367
Gl	5	5

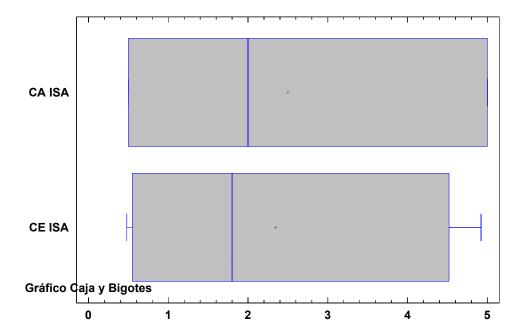
Razón de Varianzas= 1,1249

Intervalos de confianza del 95,0%

Desviación Estándar de CA ISA: [1,27925, 5,02636] Desviación Estándar de CE ISA: [1,20614, 4,73911]

Razones de Varianzas: [0,157407, 8,039]

Prueba-F para comparar Desviaciones Estándar


Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,1249 valor-P = 0,900408

No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,157407 hasta 8,039. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Comparación de Dos Muestras - CA ISA & CE ISA Muestra 1: CA ISA

Muestra 2: CE ISA

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,43 a 4,9

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA ISA	CE ISA
Recuento	6	6
Promedio	2,5	2,35833
Desviación Estándar	2,04939	1,96457
Coeficiente de Variación	81,9756%	83,3033%
Mínimo	0,5	0,43
Máximo	5,0	4,9
Rango	4,5	4,47
Sesgo Estandarizado	0,522804	0,568596
Curtosis Estandarizada	-0,9375	-0,916034
Suma de Cuadrados	58,5	52,6681

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA ISA: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE ISA: 2,35833 +/- 2,0617 [0,296638, 4,42003] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,141667 +/- 2,58239 [-2,44073, 2,72406]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,122233 valor-P = 0,905136 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,44073 hasta 2,72406. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA ISA	CE ISA
Desviación Estándar	2,04939	1,96457
Varianza	4,2	3,85954
Gl	5	5

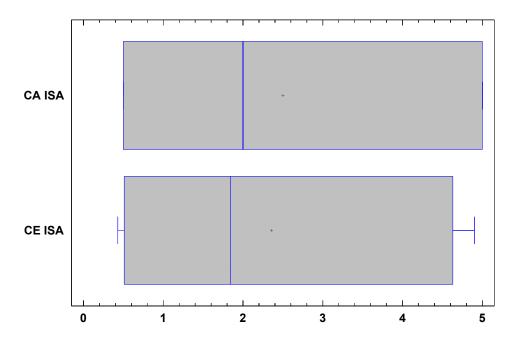
Razón de Varianzas= 1,08821

Intervalos de confianza del 95,0%

Desviación Estándar de CA ISA: [1,27925, 5,02636] Desviación Estándar de CE ISA: [1,2263, 4,81833] Razones de Varianzas: [0,152274, 7,77683]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,08821 valor-P = 0,928371


No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,152274 hasta 7,77683. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Gráfico Caja y Bigotes

Comparación de Dos Muestras - CA ISC & CE ISC Muestra 1: CA ISC

Muestra 2: CE ISC

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,42 a 4,68

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

	CA ISC	CE ISC
Recuento	6	6
Promedio	2,5	2,30333
Desviación Estándar	2,04939	1,89564
Coeficiente de Variación	81,9756%	82,3%
Mínimo	0,5	0,42
Máximo	5,0	4,68
Rango	4,5	4,26
Sesgo Estandarizado	0,522804	0,510143
Curtosis Estandarizada	-0,9375	-0,93228
Suma de Cuadrados	58,5	49,7994

El StatAdvisor

Intervalos de confianza del 95,0% para la media de CA ISC: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE ISC: 2,30333 +/- 1,98936 [0,313971, 4,2927] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,196667 +/- 2,53941 [-2,34274, 2,73608]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,17256 valor-P = 0,86644 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,34274 hasta 2,73608. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

	CA ISC	CE ISC
Desviación Estándar	2,04939	1,89564
Varianza	4,2	3,59347
Gl	5	5

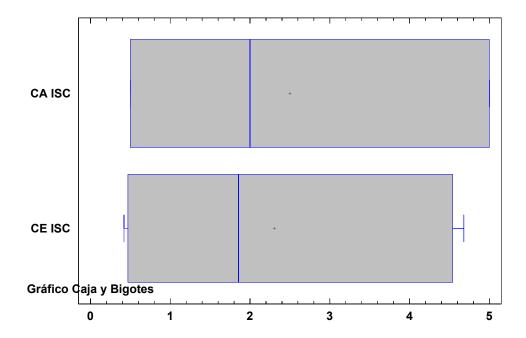
Razón de Varianzas= 1,16879

Intervalos de confianza del 95,0%

Desviación Estándar de CA ISC: [1,27925, 5,02636] Desviación Estándar de CE ISC: [1,18328, 4,64928]

Razones de Varianzas: [0,163549, 8,35265]

Prueba-F para comparar Desviaciones Estándar


Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,16879 valor-P = 0,868299

No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,163549 hasta 8,35265. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

Comparación de Dos Muestras - CA ISC & CE ISC Muestra 1: CA ISC

Muestra 2: CE ISC

Muestra 1: 6 valores en el rango de 0,5 a 5,0 Muestra 2: 6 valores en el rango de 0,45 a 4,95

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

Resumen Estadístico

	CA ISC	CE ISC
Recuento	6	6
Promedio	2,5	2,36667
Desviación Estándar	2,04939	1,95805
Coeficiente de Variación	81,9756%	82,7344%
Mínimo	0,5	0,45
Máximo	5,0	4,95
Rango	4,5	4,5
Sesgo Estandarizado	0,522804	0,568432
Curtosis Estandarizada	-0,9375	-0,895666
Suma de Cuadrados	58,5	52,7764

El StatAdvisor

Esta tabla contiene el resumen estadístico para las dos muestras de datos. Pueden utilizarse otras opciones tabulares, dentro de este análisis, para evaluar si las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas. De particular interés son el sesgo estandarizado y la curtosis estandarizada que pueden usarse para comparar si las muestras provienen de distribuciones normales. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar las pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Comparación de Medias

Intervalos de confianza del 95,0% para la media de CA ISC: 2,5 +/- 2,15071 [0,349291, 4,65071] Intervalos de confianza del 95,0% para la media de CE ISC: 2,36667 +/- 2,05485 [0,311817, 4,42152] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,133333 +/- 2,57829 [-2,44496, 2,71163]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,115226 valor-P = 0,910547 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -2,44496 hasta 2,71163. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA: estos resultados asumen que las varianzas de las dos muestras son iguales. En este caso, esa suposición parece razonable, con base en los resultados de la prueba-F para comparar las desviaciones estándar. Pueden verse los resultados de esta prueba seleccionando Comparación de Desviaciones Estándar del menú de Opciones Tabulares.

Comparación de Desviaciones Estándar

	CA ISC	CE ISC
Desviación Estándar	2,04939	1,95805
Varianza	4,2	3,83395
Gl	5	5

Razón de Varianzas= 1,09548

Intervalos de confianza del 95,0%

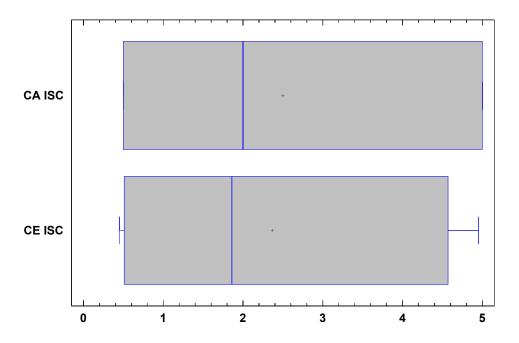
Desviación Estándar de CA ISC: [1,27925, 5,02636] Desviación Estándar de CE ISC: [1,22223, 4,80233]

Razones de Varianzas: [0,15329, 7,82874]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,09548 valor-P = 0,922752

No se rechaza la hipótesis nula para alfa = 0.05.


El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,15329 hasta 7,82874. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA IMPORTANTE: las pruebas-F y los intervalos de confianza mostrados aquí dependen de que las muestras hayan provenido de distribuciones normales. Para probar esta suposición, seleccione Resumen Estadístico de la lista de Opciones Tabulares y verifique los valores de sesgo estandarizado y de curtosis estandarizada.

Gráfico Caja y Bigotes

Comparación de Dos Muestras - CA DICLO & CE DICLO

Muestra 1: CA DICLO Muestra 2: CE DICLO

Muestra 1: 6 valores en el rango de 0,05 a 0,5 Muestra 2: 6 valores en el rango de 0,046 a 0,44

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

Resumen Estadístico

	CA DICLO	CE DICLO
Recuento	6	6
Promedio	0,25	0,227167
Desviación Estándar	0,204939	0,17542
Coeficiente de Variación	81,9756%	77,2208%
Mínimo	0,05	0,046
Máximo	0,5	0,44
Rango	0,45	0,394
Sesgo Estandarizado	0,522804	0,360516
Curtosis Estandarizada	-0,9375	-0,936305
Suma de Cuadrados	0,585	0,463489

El StatAdvisor

Esta tabla contiene el resumen estadístico para las dos muestras de datos. Pueden utilizarse otras opciones tabulares, dentro de este análisis, para evaluar si las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas. De particular interés son el sesgo estandarizado y la curtosis estandarizada que pueden usarse para comparar si las muestras provienen de distribuciones normales. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar las pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Comparación de Medias

Intervalos de confianza del 95,0% para la media de CA DICLO: 0,25 +/- 0,215071 [0,0349291, 0,465071] Intervalos de confianza del 95,0% para la media de CE DICLO: 0,227167 +/- 0,184092 [0,0430742, 0,411259] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: 0,0228333 +/- 0,245386 [-0,222553, 0,26822]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = 0,20733 valor-P = 0,839913 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -0,222553 hasta 0,26822. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA: estos resultados asumen que las varianzas de las dos muestras son iguales. En este caso, esa suposición parece razonable, con base en los resultados de la prueba-F para comparar las desviaciones estándar. Pueden verse los resultados de esta prueba seleccionando Comparación de Desviaciones Estándar del menú de Opciones Tabulares.

Comparación de Desviaciones Estándar

	CA DICLO	CE DICLO
Desviación Estándar	0,204939	0,17542
Varianza	0,042	0,0307722
Gl	5	5

Razón de Varianzas= 1,36487

Intervalos de confianza del 95,0%

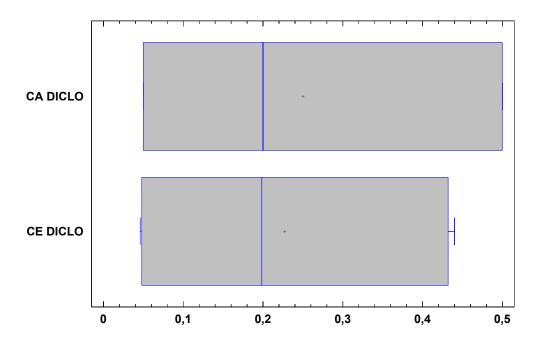
Desviación Estándar de CA DICLO: [0,127925, 0,502636] Desviación Estándar de CE DICLO: [0,109499, 0,430237]

Razones de Varianzas: [0,190987, 9,75393]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 1,36487 valor-P = 0,741197

No se rechaza la hipótesis nula para alfa = 0.05.


El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,190987 hasta 9,75393. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA IMPORTANTE: las pruebas-F y los intervalos de confianza mostrados aquí dependen de que las muestras hayan provenido de distribuciones normales. Para probar esta suposición, seleccione Resumen Estadístico de la lista de Opciones Tabulares y verifique los valores de sesgo estandarizado y de curtosis estandarizada.

Gráfico Caja y Bigotes

Comparación de Dos Muestras - CA DICLO & CE DICLO

Muestra 1: CA DICLO Muestra 2: CE DICLO

Muestra 1: 6 valores en el rango de 0,15 a 1,5 Muestra 2: 6 valores en el rango de 0,135 a 1,603

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

Resumen Estadístico

	CA DICLO	CE DICLO
Recuento	6	6
Promedio	0,75	0,757667
Desviación Estándar	0,614817	0,672833
Coeficiente de Variación	81,9756%	88,8033%
Mínimo	0,15	0,135
Máximo	1,5	1,603
Rango	1,35	1,468
Sesgo Estandarizado	0,522804	0,661331
Curtosis Estandarizada	-0,9375	-0,938044
Suma de Cuadrados	5,265	5,70788

El StatAdvisor

Esta tabla contiene el resumen estadístico para las dos muestras de datos. Pueden utilizarse otras opciones tabulares, dentro de este análisis, para evaluar si las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas. De particular interés son el sesgo estandarizado y la curtosis estandarizada que pueden usarse para comparar si las muestras provienen de distribuciones normales. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar las pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Comparación de Medias

Intervalos de confianza del 95,0% para la media de CA DICLO: 0,75 +/- 0,645213 [0,104787, 1,39521]
Intervalos de confianza del 95,0% para la media de CE DICLO: 0,757667 +/- 0,706097 [0,0515695, 1,46376]
Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: -0,00766667 +/- 0,82907 [-0,836736, 0,821403]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = -0,0206043 valor-P = 0,983967 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -0,836736 hasta 0,821403. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA: estos resultados asumen que las varianzas de las dos muestras son iguales. En este caso, esa suposición parece razonable, con base en los resultados de la prueba-F para comparar las desviaciones estándar. Pueden verse los resultados de esta prueba seleccionando Comparación de Desviaciones Estándar del menú de Opciones Tabulares.

Comparación de Desviaciones Estándar

	CA DICLO	CE DICLO
Desviación Estándar	0,614817	0,672833
Varianza	0,378	0,452705
Gl	5	5

Razón de Varianzas= 0,834981

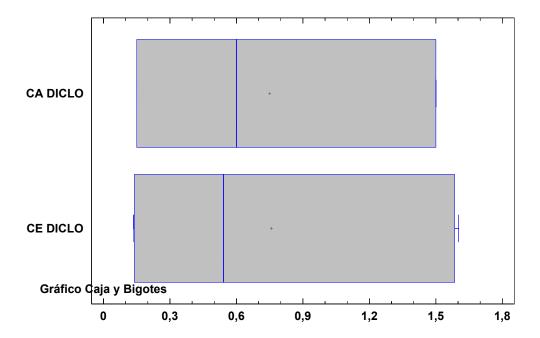
Intervalos de confianza del 95,0%

Desviación Estándar de CA DICLO: [0,383774, 1,50791] Desviación Estándar de CE DICLO: [0,419988, 1,6502]

Razones de Varianzas: [0,116839, 5,96713]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2Hipótesis Alt.: sigma $1 \Leftrightarrow \text{sigma}2$ F = 0.834981 valor-P = 0.847968


No se rechaza la hipótesis nula para alfa = 0.05.

El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,116839 hasta 5,96713. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA IMPORTANTE: las pruebas-F y los intervalos de confianza mostrados aquí dependen de que las muestras hayan provenido de distribuciones normales. Para probar esta suposición, seleccione Resumen Estadístico de la lista de Opciones Tabulares y verifique los valores de sesgo estandarizado y de curtosis estandarizada.

<u>Comparación de Dos Muestras - CA IBU & CE IBU</u> Muestra 1: CA IBU

Muestra 2: CE IBU

Muestra 1: 6 valores en el rango de 0,05 a 0,5 Muestra 2: 6 valores en el rango de 0,047 a 0,582

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

Resumen Estadístico

	CA IBU	CE IBU
Recuento	6	6
Promedio	0,25	0,274
Desviación Estándar	0,204939	0,236615
Coeficiente de Variación	81,9756%	86,3559%
Mínimo	0,05	0,047
Máximo	0,5	0,582
Rango	0,45	0,535
Sesgo Estandarizado	0,522804	0,622231
Curtosis Estandarizada	-0,9375	-0,91775
Suma de Cuadrados	0,585	0,73039

El StatAdvisor

Esta tabla contiene el resumen estadístico para las dos muestras de datos. Pueden utilizarse otras opciones tabulares, dentro de este análisis, para evaluar si las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas. De particular interés son el sesgo estandarizado y la curtosis estandarizada que pueden usarse para comparar si las muestras provienen de distribuciones normales. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar las pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Comparación de Medias

Intervalos de confianza del 95,0% para la media de CA IBU: 0,25 +/- 0,215071 [0,0349291, 0,465071] Intervalos de confianza del 95,0% para la media de CE IBU: 0,274 +/- 0,248313 [0,0256868, 0,522313] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: -0,024 +/- 0,284742 [-0,308742, 0,260742]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = -0,187803 valor-P = 0,854787 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -0,308742 hasta 0,260742. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA: estos resultados asumen que las varianzas de las dos muestras son iguales. En este caso, esa suposición parece razonable, con base en los resultados de la prueba-F para comparar las desviaciones estándar. Pueden verse los resultados de esta prueba seleccionando Comparación de Desviaciones Estándar del menú de Opciones Tabulares.

Comparación de Desviaciones Estándar

	CA IBU	CE IBU
Desviación Estándar	0,204939	0,236615
Varianza	0,042	0,0559868
Gl	5	5

Razón de Varianzas= 0,750177

Intervalos de confianza del 95,0%

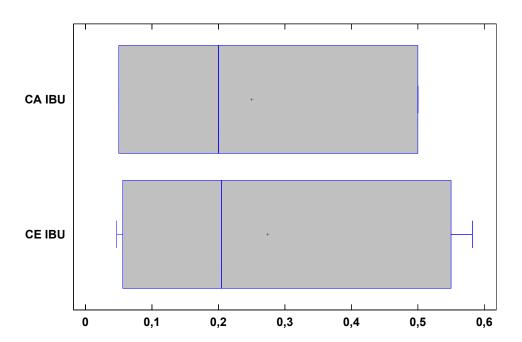
Desviación Estándar de CA IBU: [0,127925, 0,502636] Desviación Estándar de CE IBU: [0,147697, 0,580326]

Razones de Varianzas: [0,104972, 5,36108]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 \Leftrightarrow sigma2 F = 0,750177 valor-P = 0,760153

No se rechaza la hipótesis nula para alfa = 0.05.


El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,104972 hasta 5,36108. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA IMPORTANTE: las pruebas-F y los intervalos de confianza mostrados aquí dependen de que las muestras hayan provenido de distribuciones normales. Para probar esta suposición, seleccione Resumen Estadístico de la lista de Opciones Tabulares y verifique los valores de sesgo estandarizado y de curtosis estandarizada.

Gráfico Caja y Bigotes

<u>Comparación de Dos Muestras - CA IBU & CE IBU</u> Muestra 1: CA IBU

Muestra 2: CE IBU

Muestra 1: 6 valores en el rango de 0,15 a 1,5 Muestra 2: 6 valores en el rango de 0,148 a 1,583

El StatAdvisor

Este procedimiento está diseñado para comprar dos muestras de datos. Calculará varias estadísticas y gráficas para cada muestra, y ejecutará varias pruebas para determinar si hay diferencias estadísticamente significativas entre las dos muestras.

Resumen Estadístico

	CA IBU	CE IBU
Recuento	6	6
Promedio	0,75	0,7545
Desviación Estándar	0,614817	0,632955
Coeficiente de Variación	81,9756%	83,8906%
Mínimo	0,15	0,148
Máximo	1,5	1,583
Rango	1,35	1,435
Sesgo Estandarizado	0,522804	0,611129
Curtosis Estandarizada	-0,9375	-0,909916
Suma de Cuadrados	5,265	5,41878

El StatAdvisor

Esta tabla contiene el resumen estadístico para las dos muestras de datos. Pueden utilizarse otras opciones tabulares, dentro de este análisis, para evaluar si las diferencias entre los estadísticos de las dos muestras son estadísticamente significativas. De particular interés son el sesgo estandarizado y la curtosis estandarizada que pueden usarse para comparar si las muestras provienen de distribuciones normales. Valores de estos estadísticos fuera del rango de -2 a +2 indican desviaciones significativas de la normalidad, lo que tendería a invalidar las pruebas que comparan las desviaciones estándar. En este caso, ambos valores de sesgo estandarizado se encuentran dentro del rango esperado. Ambas curtosis estandarizadas se encuentran dentro del rango esperado.

Comparación de Medias

Intervalos de confianza del 95,0% para la media de CA IBU: 0,75 +/- 0,645213 [0,104787, 1,39521] Intervalos de confianza del 95,0% para la media de CE IBU: 0,7545 +/- 0,664247 [0,0902527, 1,41875] Intervalos de confianza del 95,0% intervalo de confianza para la diferencia de medias suponiendo varianzas iguales: -0,0045 +/- 0,802664 [-0,807164, 0,798164]

Prueba t para comparar medias

Hipótesis nula: media1 = media2 Hipótesis Alt.: media1 <> media2 suponiendo varianzas iguales: t = -0,0124917 valor-P = 0,990279 No se rechaza la hipótesis nula para alfa = 0,05.

El StatAdvisor

Esta opción ejecuta una prueba-t para comparar las medias de las dos muestras. También construye los intervalos, ó cotas, de confianza para cada media y para la diferencia entre las medias. De interés particular es el intervalo de confianza para la diferencia entre las medias, el cual se extiende desde -0,807164 hasta 0,798164. Puesto que el intervalo contiene el valor de 0, no hay diferencia significativa entre las medias de las dos muestras de datos, con un nivel de confianza del 95,0%.

También puede usarse una prueba-t para evaluar hipótesis específicas acerca de la diferencia entre las medias de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si la diferencia entre las dos medias es igual a 0,0 versus la hipótesis alterna de que la diferencia no es igual a 0,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA: estos resultados asumen que las varianzas de las dos muestras son iguales. En este caso, esa suposición parece razonable, con base en los resultados de la prueba-F para comparar las desviaciones estándar. Pueden verse los resultados de esta prueba seleccionando Comparación de Desviaciones Estándar del menú de Opciones Tabulares.

Comparación de Desviaciones Estándar

	CA IBU	CE IBU
Desviación Estándar	0,614817	0,632955
Varianza	0,378	0,400632
Gl	5	5

Razón de Varianzas= 0,943509

Intervalos de confianza del 95,0%

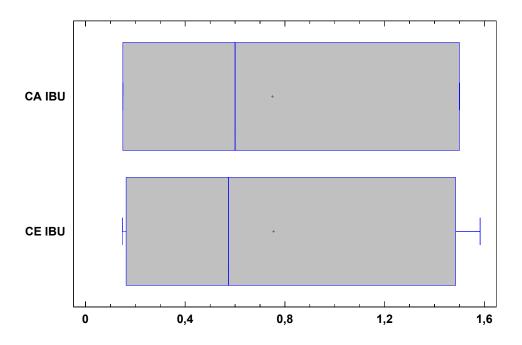
Desviación Estándar de CA IBU: [0,383774, 1,50791] Desviación Estándar de CE IBU: [0,395096, 1,55239]

Razones de Varianzas: [0,132025, 6,74271]

Prueba-F para comparar Desviaciones Estándar

Hipótesis Nula: sigma1 = sigma2 Hipótesis Alt.: sigma1 ⇔ sigma2 F = 0.943509 valor-P = 0.950699

No se rechaza la hipótesis nula para alfa = 0.05.


El StatAdvisor

Esta opción ejecuta una prueba-F para comparar las varianzas de las dos muestras. También construye intervalos ó cotas de confianza para cada desviación estándar y para la razón de varianzas. De particular interés es el intervalo de confianza para la razón de varianzas, el cual se extiende desde 0,132025 hasta 6,74271. Puesto que el intervalo contiene el valor de 1, no hay diferencia estadísticamente significativa entre las desviaciones estándar de las dos muestras con un nivel de confianza del 95,0%.

También puede ejecutarse una prueba-F para evaluar una hipótesis específica acerca de las desviaciones estándar de las poblaciones de las cuales provienen las dos muestras. En este caso, la prueba se ha construido para determinar si el cociente de las desviaciones estándar es igual a 1,0 versus la hipótesis alternativa de que el cociente no es igual a 1,0. Puesto que el valor-P calculado no es menor que 0,05, no se puede rechazar la hipótesis nula.

NOTA IMPORTANTE: las pruebas-F y los intervalos de confianza mostrados aquí dependen de que las muestras hayan provenido de distribuciones normales. Para probar esta suposición, seleccione Resumen Estadístico de la lista de Opciones Tabulares y verifique los valores de sesgo estandarizado y de curtosis estandarizada.

Gráfico Caja y Bigotes

Regresión Simple - AREA DSA vs. CONC

Variable dependiente: AREA DSA Variable independiente: CONC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	-5,29852	1,65797	-3,19579	0,0056
Pendiente	34,7048	0,546369	63,519	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	54951,8	1	54951,8	4034,66	0,0000
Residuo	217,919	16	13,6199		
Total (Corr.)	55169,7	17			

Coeficiente de Correlación = 0,998023

R-cuadrada = 99,605 porciento

R-cuadrado (ajustado para g.l.) = 99,5803 porciento

Error estándar del est. = 3,69052

Error absoluto medio = 3,06922

Estadístico Durbin-Watson = 1,56744 (P=0,1463)

Autocorrelación de residuos en retraso 1 = 0,170071

El StatAdvisor

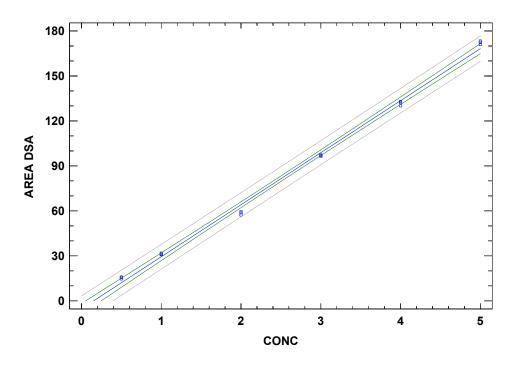
La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA DSA y CONC. La ecuación del modelo ajustado es

AREA DSA = -5,29852 + 34,7048*CONC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA DSA y CONC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,605% de la variabilidad en AREA DSA. El coeficiente de correlación es igual a 0,998023, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,69052. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.

El error absoluto medio (MAE) de 3,06922 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.


Residuos Atípicos

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
3	2,0	57,31	64,1111	-6,80109	-2,10

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA DSA del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay un residuo Estudentizado mayor que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA DSA = -5,29852 + 34,7048*CONC

Gráfico de AREA DSA

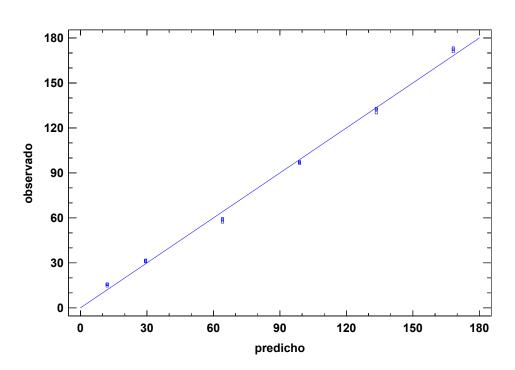


Gráfico de Residuos

AREA DSA = -5,29852 + 34,7048*CONC

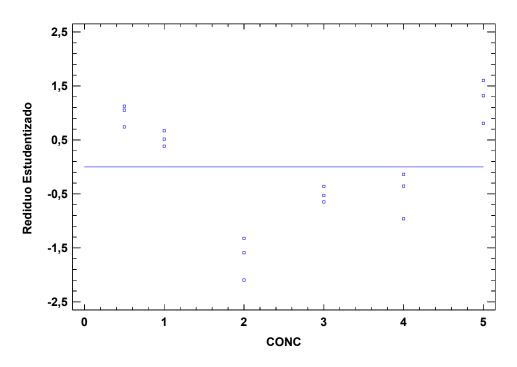


Gráfico de Residuos

AREA DSA = -5,29852 + 34,7048*CONC

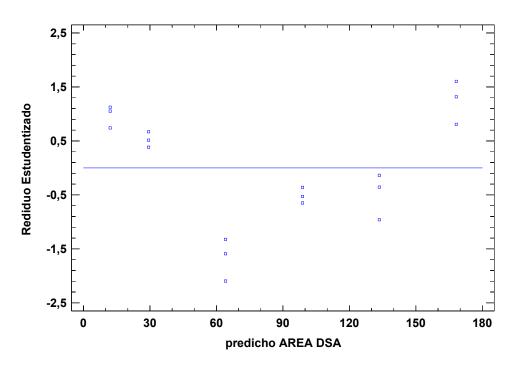
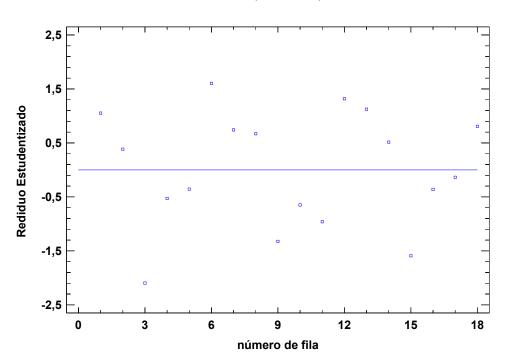



Gráfico de Residuos

AREA DSA = -5,29852 + 34,7048*CONC

Regresión Simple - AREA DSA vs. CONC. DSA

Variable dependiente: AREA DSA Variable independiente: CONC. DSA

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	-0,560658	1,86982	-0,299846	0,7682
Pendiente	30,5964	0,616182	49,6548	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	42711,3	1	42711,3	2465,60	0,0000
Residuo	277,167	16	17,3229		
Total (Corr.)	42988,5	17			

Coeficiente de Correlación = 0,996771

R-cuadrada = 99,3553 porciento

R-cuadrado (ajustado para g.l.) = 99,315 porciento

Error estándar del est. = 4,16208

Error absoluto medio = 3,20157

Estadístico Durbin-Watson = 2,31006 (P=0,7095)

Autocorrelación de residuos en retraso 1 = -0,208611

El StatAdvisor

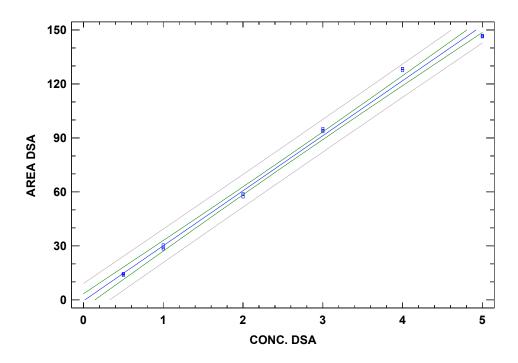
La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA DSA y CONC. DSA. La ecuación del modelo ajustado es

AREA DSA = -0.560658 + 30.5964*CONC. DSA

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA DSA y CONC. DSA con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,3553% de la variabilidad en AREA DSA. El coeficiente de correlación es igual a 0,996771, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 4,16208. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.

El error absoluto medio (MAE) de 3,20157 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.


Residuos Atípicos

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA DSA del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, no hay residuos Estudentizados mayores que 2.

Gráfico del Modelo Ajustado AREA DSA = -0,560658 + 30,5964*CONC. DSA

Gráfico de AREA DSA

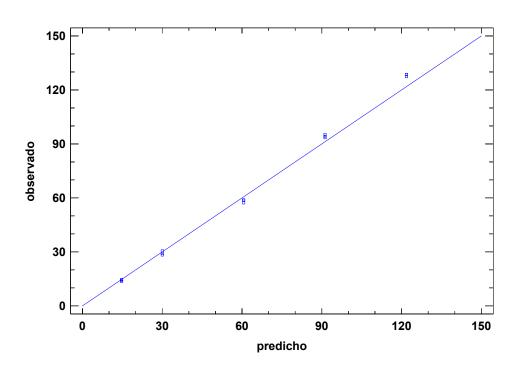


Gráfico de Residuos

AREA DSA = -0,560658 + 30,5964*CONC. DSA

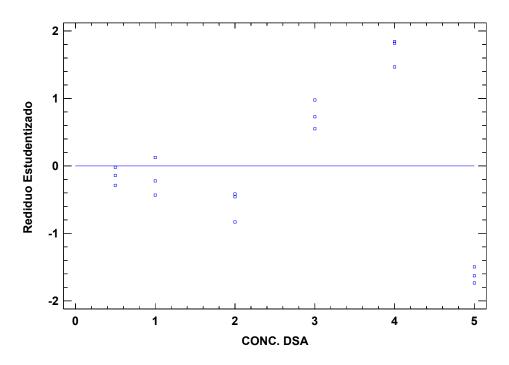


Gráfico de Residuos

AREA DSA = -0,560658 + 30,5964*CONC. DSA

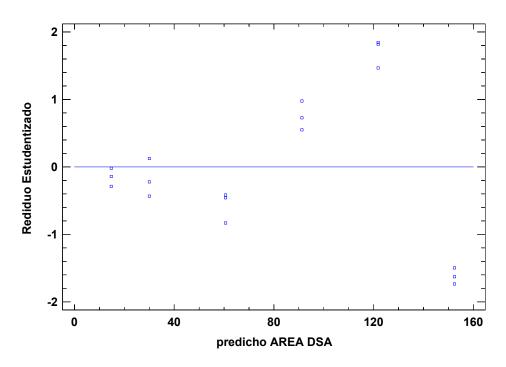
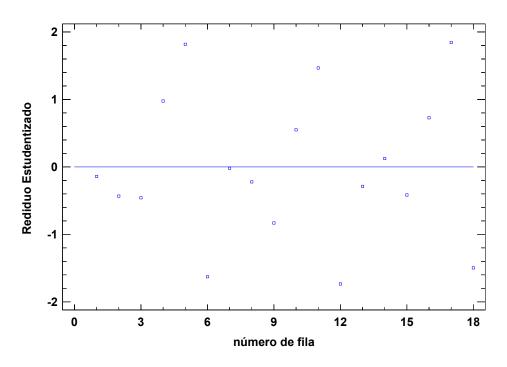



Gráfico de Residuos

AREA DSA = -0,560658 + 30,5964*CONC. DSA

Regresión Simple - AREA DSC vs. CONC

Variable dependiente: AREA DSC Variable independiente: CONC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	-1,91224	1,60981	-1,18787	0,2522
Pendiente	34,8594	0,530498	65,7106	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	55442,4	1	55442,4	4317,89	0,0000
Residuo	205,443	16	12,8402		
Total (Corr.)	55647,8	17			

Coeficiente de Correlación = 0.998152

R-cuadrada = 99,6308 porciento

R-cuadrado (ajustado para g.l.) = 99,6077 porciento

Error estándar del est. = 3,58332

Error absoluto medio = 2,90411

Estadístico Durbin-Watson = 1,3977 (P=0,0755)

Autocorrelación de residuos en retraso 1 = 0,24066

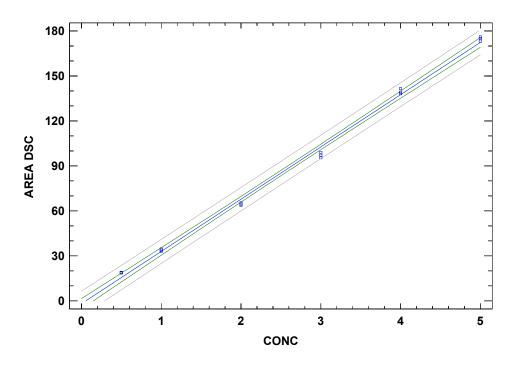
El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA DSC y CONC. La ecuación del modelo ajustado es

AREA DSC = -1,91224 + 34,8594*CONC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA DSC y CONC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,6308% de la variabilidad en AREA DSC. El coeficiente de correlación es igual a 0,998152, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,58332. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.


El error absoluto medio (MAE) de 2,90411 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
16	3,0	95,58	102,666	-7,08584	-2,29

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA DSC del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay un residuo Estudentizado mayor que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA DSC = -1,91224 + 34,8594*CONC

Gráfico de AREA DSC

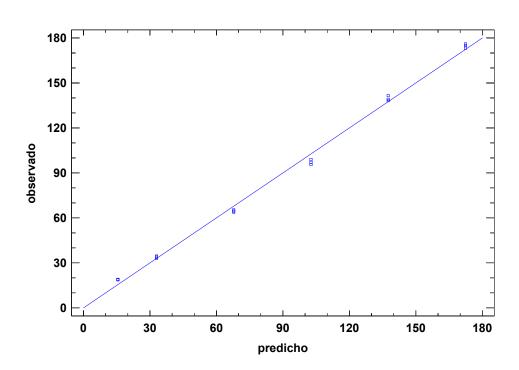


Gráfico de Residuos

AREA DSC = -1,91224 + 34,8594*CONC

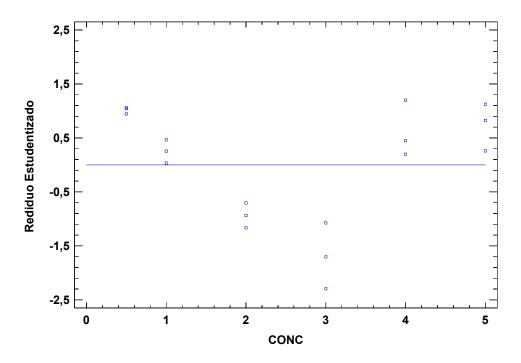


Gráfico de Residuos

AREA DSC = -1,91224 + 34,8594*CONC

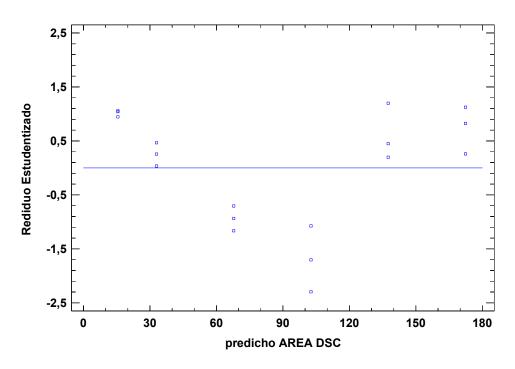
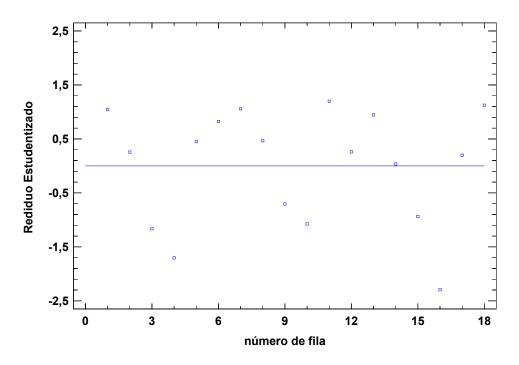



Gráfico de Residuos

AREA DSC = -1,91224 + 34,8594*CONC

Regresión Simple - AREA DSC vs. CONC. DSC

Variable dependiente: AREA DSC Variable independiente: CONC. DSC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	-3,49036	1,36289	-2,56099	0,0209
Pendiente	34,053	0,449129	75,8202	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	52907,2	1	52907,2	5748,71	0,0000
Residuo	147,253	16	9,20332		
Total (Corr.)	53054,4	17			

Coeficiente de Correlación = 0,998611

R-cuadrada = 99,7224 porciento

R-cuadrado (ajustado para g.l.) = 99,7051 porciento

Error estándar del est. = 3,0337Error absoluto medio = 2,54432

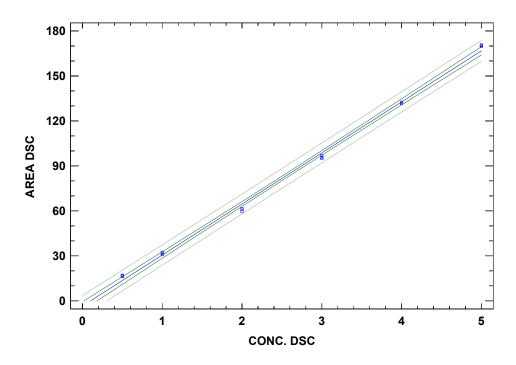
El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA DSC y CONC. DSC. La ecuación del modelo ajustado es

AREA DSC = -3,49036 + 34,053*CONC. DSC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA DSC y CONC. DSC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,7224% de la variabilidad en AREA DSC. El coeficiente de correlación es igual a 0,998611, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,0337. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.


El error absoluto medio (MAE) de 2,54432 es el valor promedio de los residuos.

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA DSC del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, no hay residuos Estudentizados mayores que 2.

Gráfico del Modelo Ajustado AREA DSC = -3,49036 + 34,053*CONC. DSC

Gráfico de AREA DSC

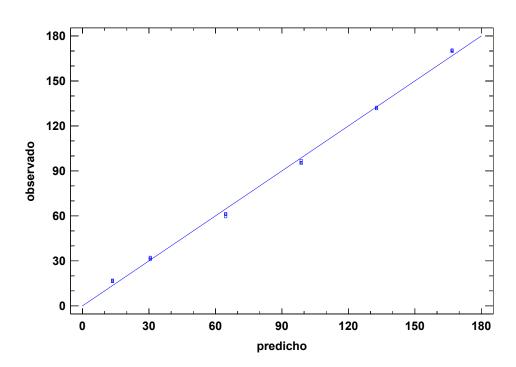


Gráfico de Residuos AREA DSC = -3,49036 + 34,053*CONC. DSC

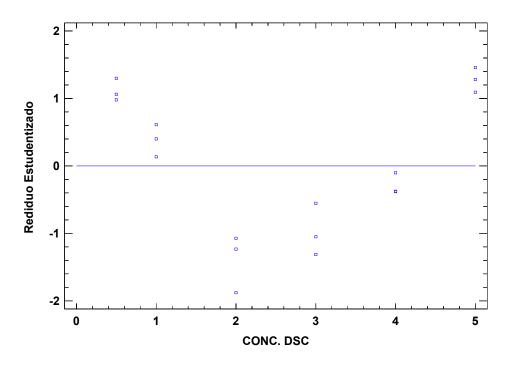


Gráfico de Residuos

AREA DSC = -3,49036 + 34,053*CONC. DSC

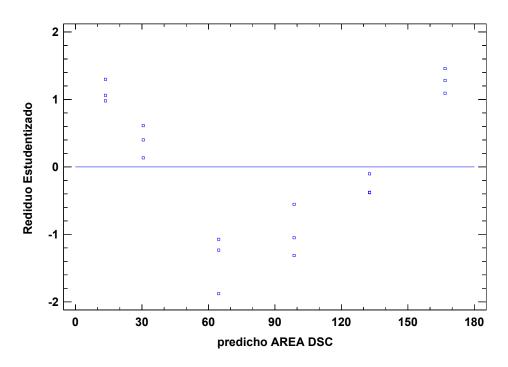
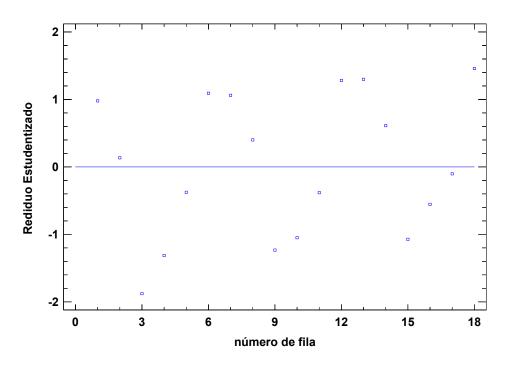



Gráfico de Residuos

AREA DSC = -3,49036 + 34,053*CONC. DSC

Regresión Simple - AREA ISA vs. CONC

Variable dependiente: AREA ISA Variable independiente: CONC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	9,81327	1,21473	8,07858	0,0000
Pendiente	22,768	0,400302	56,877	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	23651,1	1	23651,1	3234,99	0,0000
Residuo	116,977	16	7,31103		
Total (Corr.)	23768,1	17			

Coeficiente de Correlación = 0,997536

R-cuadrada = 99,5078 porciento

R-cuadrado (ajustado para g.l.) = 99,4771 porciento

Error estándar del est. = 2,70389

Error absoluto medio = 2,12055

Estadístico Durbin-Watson = 1,56648 (P=0,1458)

Autocorrelación de residuos en retraso 1 = 0,214622

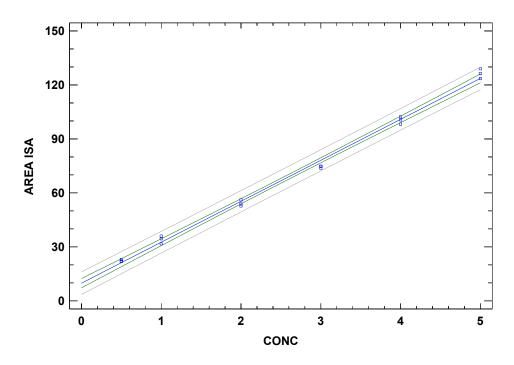
El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA ISA y CONC. La ecuación del modelo ajustado es

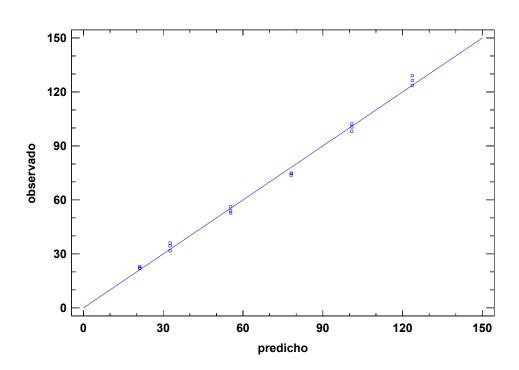
AREA ISA = 9.81327 + 22.768*CONC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA ISA y CONC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,5078% de la variabilidad en AREA ISA. El coeficiente de correlación es igual a 0,997536, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 2,70389. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.


El error absoluto medio (MAE) de 2,12055 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
6	5,0	129,02	123,653	5,36682	2,55


El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA ISA del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay un residuo Estudentizado mayor que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA ISA = 9,81327 + 22,768*CONC

Gráfico de AREA ISA

Gráfico de Residuos AREA ISA = 9,81327 + 22,768*CONC

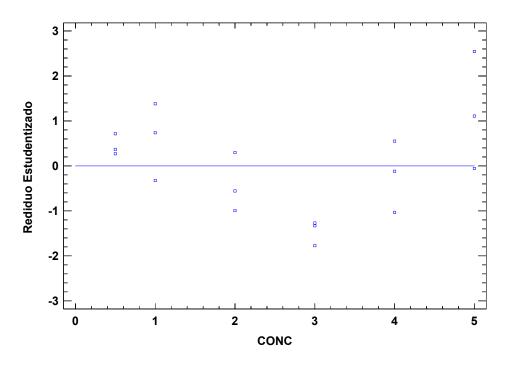
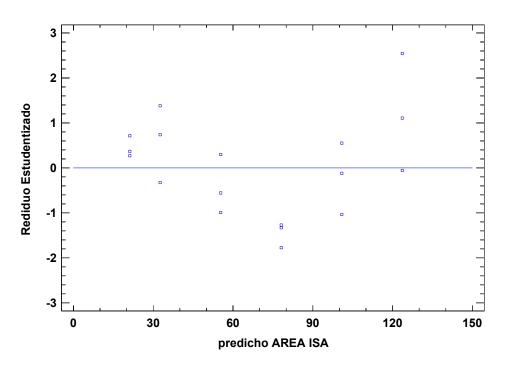
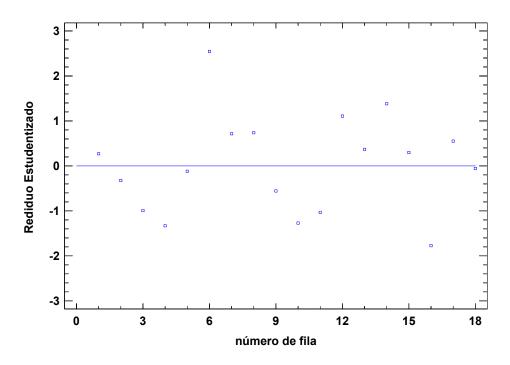




Gráfico de Residuos AREA ISA = 9,81327 + 22,768*CONC

Gráfico de Residuos AREA ISA = 9,81327 + 22,768*CONC

Regresión Simple - AREA ISA vs. CONC. ISA

Variable dependiente: AREA ISA Variable independiente: CONC. ISA

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	5,27552	1,46288	3,60625	0,0024
Pendiente	23,6703	0,482079	49,1005	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	25563,0	1	25563,0	2410,86	0,0000
Residuo	169,652	16	10,6033		
Total (Corr.)	25732,7	17			

Coeficiente de Correlación = 0,996698

R-cuadrada = 99,3407 porciento

R-cuadrado (ajustado para g.l.) = 99,2995 porciento

Error estándar del est. = 3,25627

Error absoluto medio = 2,43933

Estadístico Durbin-Watson = 1,84171 (P=0,3246)

Autocorrelación de residuos en retraso 1 = -0,0749034

El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA ISA y CONC. ISA. La ecuación del modelo ajustado es

AREA ISA = 5,27552 + 23,6703*CONC. ISA

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA ISA y CONC. ISA con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,3407% de la variabilidad en AREA ISA. El coeficiente de correlación es igual a 0,996698, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,25627. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.

El error absoluto medio (MAE) de 2,43933 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.

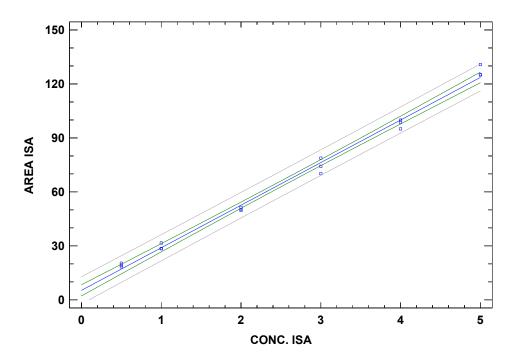
Valores Predichos

		95,00%		95,00%	
	Predicciones	Límite	Predicción	Límite	Confianza
X	Y	Inferior	Superior	Inferior	Superior
0,5	17,1107	9,70585	24,5155	14,4311	19,7903
5,0	123,627	116,117	131,137	120,67	126,585

El StatAdvisor

Esta tabla muestra los valores predichos para AREA ISA usando el modelo ajustado. Además de las mejores predicciones, la tabla muestra:

- (1) intervalos de previsión del 95,0% para las nuevas observaciones
- (2) intervalos de confianza del 95,0% para la media de varias observaciones


Los intervalos de predicción y de confianza corresponden a las cotas internas y externas en la gráfica del modelo ajustado.

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
4	3,0	70,15	76,2865	-6,13653	-2,15
18	5,0	130,75	123,627	7,12279	2,94

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA ISA del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay 2 residuos Estudentizados mayores que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA ISA = 5,27552 + 23,6703*CONC. ISA

Gráfico de AREA ISA

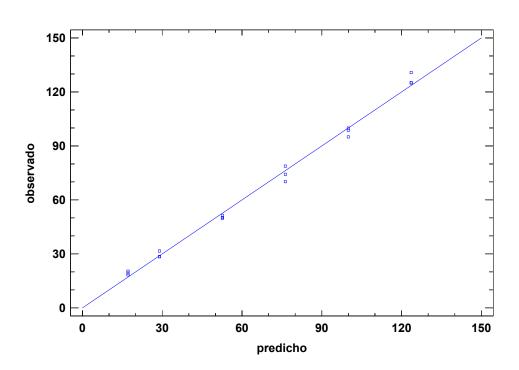


Gráfico de Residuos AREA ISA = 5,27552 + 23,6703*CONC. ISA

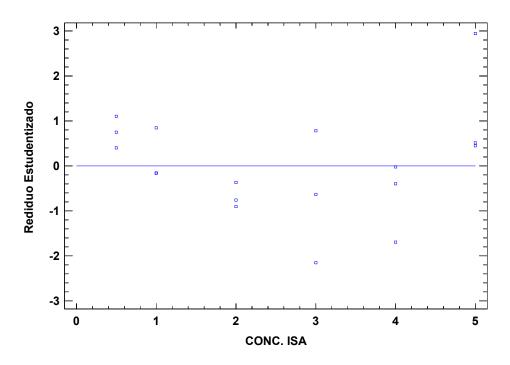


Gráfico de Residuos AREA ISA = 5,27552 + 23,6703*CONC. ISA

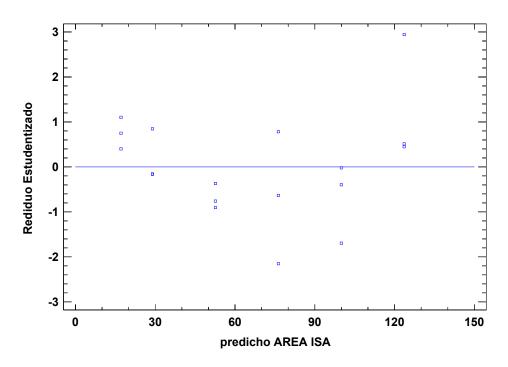
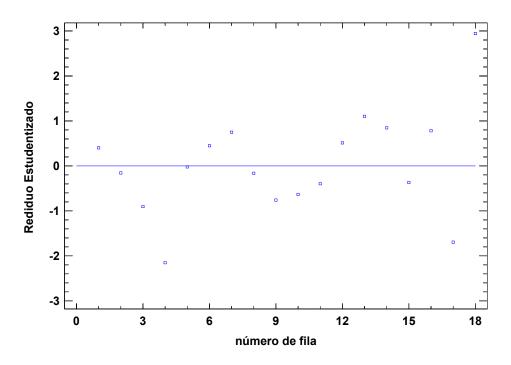



Gráfico de Residuos AREA ISA = 5,27552 + 23,6703*CONC. ISA

Regresión Simple - AREA ISC vs. CONC

Variable dependiente: AREA ISC Variable independiente: CONC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	5,05724	1,50913	3,3511	0,0041
Pendiente	22,5148	0,49732	45,2724	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	23128,1	1	23128,1	2049,59	0,0000
Residuo	180,549	16	11,2843		
Total (Corr.)	23308,7	17			

Coeficiente de Correlación = 0,996119

R-cuadrada = 99,2254 porciento

R-cuadrado (ajustado para g.l.) = 99,177 porciento

Error estándar del est. = 3,35921 Error absoluto medio = 2,79258

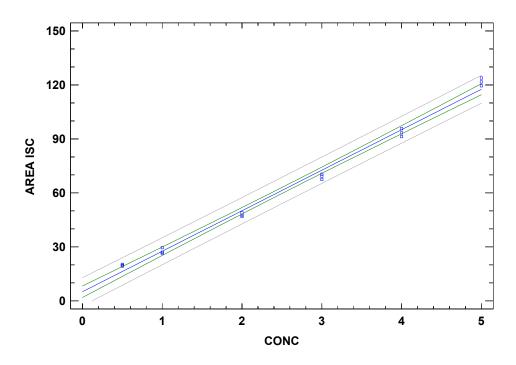
El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA ISC y CONC. La ecuación del modelo ajustado es

AREA ISC = 5,05724 + 22,5148*CONC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA ISC y CONC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,2254% de la variabilidad en AREA ISC. El coeficiente de correlación es igual a 0,996119, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,35921. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.


El error absoluto medio (MAE) de 2,79258 es el valor promedio de los residuos.

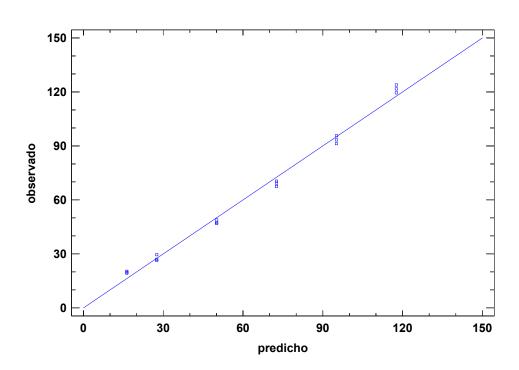
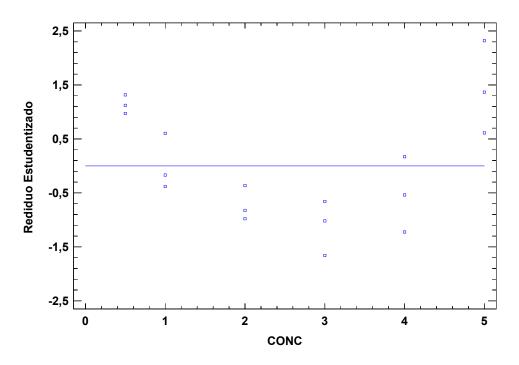
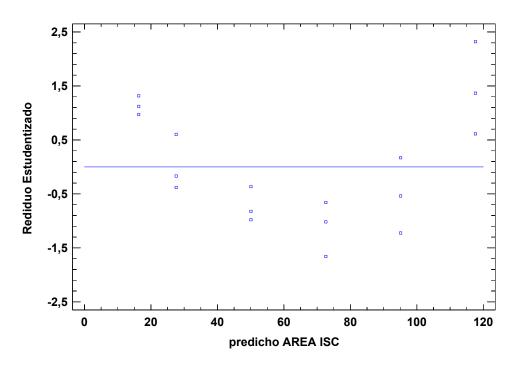
			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
18	5,0	123,87	117,631	6,2386	2,32

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA ISC del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay un residuo Estudentizado mayor que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA ISC = 5,05724 + 22,5148*CONC

Gráfico de AREA ISC

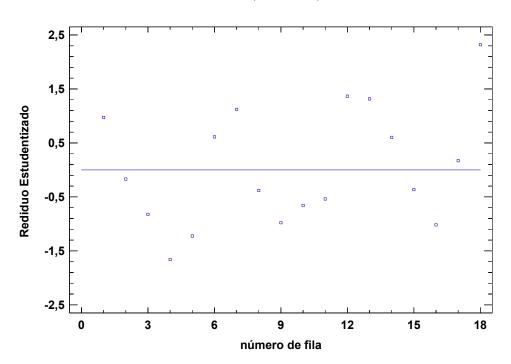

Gráfico de Residuos
AREA ISC = 5,05724 + 22,5148*CONC

Gráfico de Residuos AREA ISC = 5,05724 + 22,5148*CONC

Gráfico de Residuos AREA ISC = 5,05724 + 22,5148*CONC

Regresión Simple - AREA ISC vs. CONC. ISC

Variable dependiente: AREA ISC Variable independiente: CONC. ISC

Lineal: Y = a + b*X

Coeficientes

	Mínimos Cuadrados	Estándar	Estadístico	
Parámetro	Estimado	Error	T	Valor-P
Intercepto	4,97668	1,49923	3,31949	0,0043
Pendiente	22,0834	0,494058	44,6981	0,0000

Análisis de Varianza

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Modelo	22250,3	1	22250,3	1997,92	0,0000
Residuo	178,188	16	11,1368		
Total (Corr.)	22428,5	17			

Coeficiente de Correlación = 0,99602

R-cuadrada = 99,2055 porciento

R-cuadrado (ajustado para g.l.) = 99,1559 porciento

Error estándar del est. = 3,33718

Error absoluto medio = 2,74954

Estadístico Durbin-Watson = 1,83885 (P=0,3224)

Autocorrelación de residuos en retraso 1 = 0,0556041

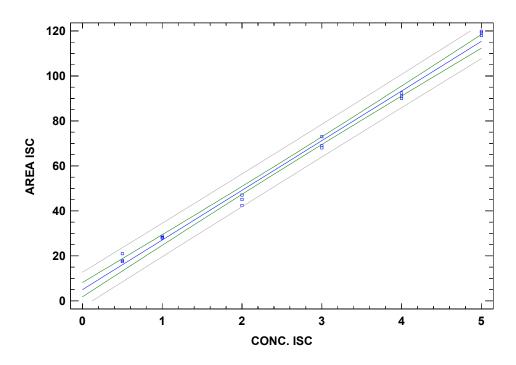
El StatAdvisor

La salida muestra los resultados de ajustar un modelo lineal para describir la relación entre AREA ISC y CONC. ISC. La ecuación del modelo ajustado es

AREA ISC = 4,97668 + 22,0834*CONC. ISC

Puesto que el valor-P en la tabla ANOVA es menor que 0,05, existe una relación estadísticamente significativa entre AREA ISC y CONC. ISC con un nivel de confianza del 95,0%.

El estadístico R-Cuadrada indica que el modelo ajustado explica 99,2055% de la variabilidad en AREA ISC. El coeficiente de correlación es igual a 0,99602, indicando una relación relativamente fuerte entre las variables. El error estándar del estimado indica que la desviación estándar de los residuos es 3,33718. Este valor puede usarse para construir límites de predicción para nuevas observaciones, seleccionando la opción de Pronósticos del menú de texto.


El error absoluto medio (MAE) de 2,74954 es el valor promedio de los residuos. El estadístico de Durbin-Watson (DW) examina los residuos para determinar si hay alguna correlación significativa basada en el orden en el que se presentan en el archivo de datos. Puesto que el valor-P es mayor que 0,05, no hay indicación de una autocorrelación serial en los residuos con un nivel de confianza del 95,0%.

			Predicciones		Residuos
Fila	X	Y	Y	Residuos	Studentizados
3	2,0	42,43	49,1436	-6,71355	-2,36

El StatAdvisor

La tabla de residuos atípicos enlista todas las observaciones que tienen residuos Estudentizados mayores a 2, en valor absoluto. Los residuos Estudentizados miden cuántas desviaciones estándar se desvía cada valor observado de AREA ISC del modelo ajustado, utilizando todos los datos excepto esa observación. En este caso, hay un residuo Estudentizado mayor que 2, pero ninguno mayor que 3.

Gráfico del Modelo Ajustado AREA ISC = 4,97668 + 22,0834*CONC. ISC

Gráfico de AREA ISC

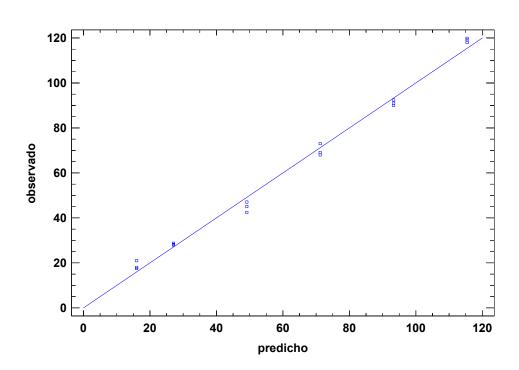


Gráfico de Residuos

AREA ISC = 4,97668 + 22,0834*CONC. ISC

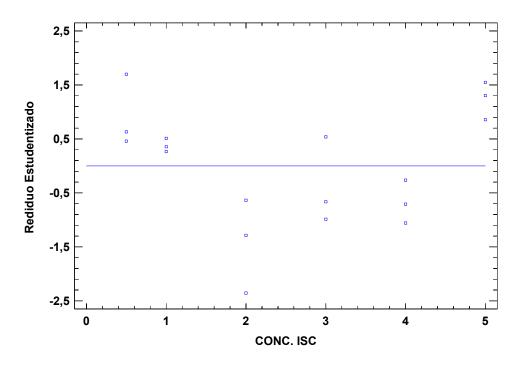


Gráfico de Residuos

AREA ISC = 4,97668 + 22,0834*CONC. ISC

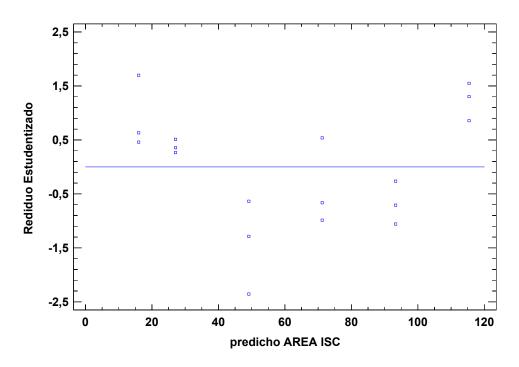
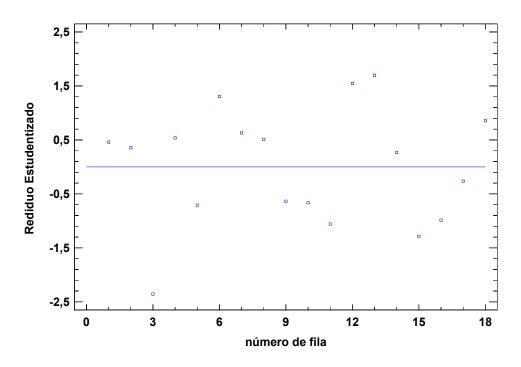



Gráfico de Residuos

AREA ISC = 4,97668 + 22,0834*CONC. ISC

